import os from flask import Flask, request, jsonify, render_template from transformers import pipeline import mysql.connector from groq import Groq app = Flask(name) # Initialize the text generation pipeline pipe = pipeline("text-generation", model="defog/sqlcoder-7b-2") # Initialize the Groq client groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # Database connection details DB_CONFIG = { 'host': 'auth-db579.hstgr.io', 'user': 'u121769371_ki_aiml_test', 'password': os.environ.get("DB_PASSWORD"), 'database': 'u121769371_ki_aiml_test' } def generate_sql(text): output = pipe(text, max_new_tokens=50) return output[0]['generated_text'] def execute_query(query): try: connection = mysql.connector.connect(**DB_CONFIG) cursor = connection.cursor() cursor.execute(query) results = cursor.fetchall() cursor.close() connection.close() return results except mysql.connector.Error as err: print(f"Error: {err}") return None @app.route('/') def index(): return render_template('index.html') @app.route('/chatbot', methods=['POST']) def chatbot(): data = request.json user_query = data.get('text') if not user_query: return jsonify({"error": "No query provided"}), 400 try: # Step 1: Convert natural language to SQL sql_query = generate_sql(user_query) # Step 2: Execute SQL query query_result = execute_query(sql_query) if query_result is None: return jsonify({"error": "Database query execution failed"}), 500 # Step 3: Generate natural language response using Groq prompt = f"Original query: {user_query}\nSQL query: {sql_query}\nQuery result: {query_result}\nPlease provide a natural language summary of the query result." chat_completion = groq_client.chat.completions.create( messages=[ { "role": "user", "content": prompt, } ], model="llama3-8b-8192", ) natural_language_response = chat_completion.choices[0].message.content return jsonify({"response": natural_language_response}) except Exception as e: return jsonify({"error": str(e)}), 500 if name == 'main': app.run(host='0.0.0.0', port=8000)