Spaces:
Sleeping
Sleeping
import numpy as np | |
import tensorflow as tf | |
import librosa | |
import os | |
import warnings | |
warnings.filterwarnings("ignore") | |
def load_model(): | |
abs_path = os.getcwd() | |
model = tf.keras.models.load_model(abs_path + "/saved_model/model_20230607_02") | |
model.compile(optimizer='adam', | |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), | |
metrics=['accuracy']) | |
return model | |
def sample_preparer(location): | |
sample_data = [] | |
sample = np.zeros((128, 100, 3)) | |
y, sr = librosa.load(location, sr=22050) | |
y, _ = librosa.effects.trim(y, top_db=50) | |
y = librosa.resample(y=y, orig_sr=sr, target_sr=22050) | |
melspect = librosa.feature.melspectrogram(y=y) | |
for i, _ in enumerate(melspect): # 128 | |
for j, _ in enumerate(melspect[i]): # LENGTH | |
sample[i][j] = melspect[i][j] | |
sample_data = [sample] | |
return sample_data | |