Spaces:
Running
Running
File size: 7,332 Bytes
a15256b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
import os
import pdb
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
import argparse
import logging
from pathlib import Path
import torch, platform
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
from pytorch_lightning.strategies import DDPStrategy
from AR.data.data_module import Text2SemanticDataModule
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
torch.set_float32_matmul_precision("high")
from AR.utils import get_newest_ckpt
from collections import OrderedDict
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
tmp_path="%s.pth"%(ttime())
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
class my_model_ckpt(ModelCheckpoint):
def __init__(
self,
config,
if_save_latest,
if_save_every_weights,
half_weights_save_dir,
exp_name,
**kwargs
):
super().__init__(**kwargs)
self.if_save_latest = if_save_latest
self.if_save_every_weights = if_save_every_weights
self.half_weights_save_dir = half_weights_save_dir
self.exp_name = exp_name
self.config = config
def on_train_epoch_end(self, trainer, pl_module):
# if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
if self._should_save_on_train_epoch_end(trainer):
monitor_candidates = self._monitor_candidates(trainer)
if (
self._every_n_epochs >= 1
and (trainer.current_epoch + 1) % self._every_n_epochs == 0
):
if (
self.if_save_latest == True
): ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
to_clean = list(os.listdir(self.dirpath))
self._save_topk_checkpoint(trainer, monitor_candidates)
if self.if_save_latest == True:
for name in to_clean:
try:
os.remove("%s/%s" % (self.dirpath, name))
except:
pass
if self.if_save_every_weights == True:
to_save_od = OrderedDict()
to_save_od["weight"] = OrderedDict()
dictt = trainer.strategy._lightning_module.state_dict()
for key in dictt:
to_save_od["weight"][key] = dictt[key].half()
to_save_od["config"] = self.config
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
# torch.save(
my_save(
to_save_od,
"%s/%s-e%s.ckpt"
% (
self.half_weights_save_dir,
self.exp_name,
trainer.current_epoch + 1,
),
)
self._save_last_checkpoint(trainer, monitor_candidates)
def main(args):
config = load_yaml_config(args.config_file)
output_dir = Path(config["output_dir"])
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir = output_dir / "ckpt"
ckpt_dir.mkdir(parents=True, exist_ok=True)
seed_everything(config["train"]["seed"], workers=True)
ckpt_callback: ModelCheckpoint = my_model_ckpt(
config=config,
if_save_latest=config["train"]["if_save_latest"],
if_save_every_weights=config["train"]["if_save_every_weights"],
half_weights_save_dir=config["train"]["half_weights_save_dir"],
exp_name=config["train"]["exp_name"],
save_top_k=-1,
monitor="top_3_acc",
mode="max",
save_on_train_epoch_end=True,
every_n_epochs=config["train"]["save_every_n_epoch"],
dirpath=ckpt_dir,
)
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
os.environ["MASTER_ADDR"]="localhost"
trainer: Trainer = Trainer(
max_epochs=config["train"]["epochs"],
accelerator="gpu" if torch.cuda.is_available() else "cpu",
# val_check_interval=9999999999999999999999,###不要验证
# check_val_every_n_epoch=None,
limit_val_batches=0,
devices=-1 if torch.cuda.is_available() else 1,
benchmark=False,
fast_dev_run=False,
strategy = DDPStrategy(
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
) if torch.cuda.is_available() else "auto",
precision=config["train"]["precision"],
logger=logger,
num_sanity_val_steps=0,
callbacks=[ckpt_callback],
)
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
config, output_dir
)
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
config,
train_semantic_path=config["train_semantic_path"],
train_phoneme_path=config["train_phoneme_path"],
# dev_semantic_path=args.dev_semantic_path,
# dev_phoneme_path=args.dev_phoneme_path
)
try:
# 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
ckpt_path = ckpt_dir / newest_ckpt_name
except Exception:
ckpt_path = None
print("ckpt_path:", ckpt_path)
trainer.fit(model, data_module, ckpt_path=ckpt_path)
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config_file",
type=str,
default="configs/s1longer.yaml",
help="path of config file",
)
# args for dataset
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
# parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
# parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
# parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
# parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
args = parser.parse_args()
logging.info(str(args))
main(args)
|