import gradio as gr from prompt_refiner import PromptRefiner from variables import models, explanation_markdown, metaprompt_list, examples from custom_css import custom_css class GradioInterface: def __init__(self, prompt_refiner: PromptRefiner, custom_css): self.prompt_refiner = prompt_refiner with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface: # CONTAINER 1 with gr.Column(elem_classes=["container", "title-container"]): gr.Markdown("# PROMPT++") gr.Markdown("### Automating Prompt Engineering by Refining your Prompts") gr.Markdown("Learn how to generate an improved version of your prompts.") # CONTAINER 2 with gr.Column(elem_classes=["container", "input-container"]): prompt_text = gr.Textbox(label="Type your prompt (or leave empty to see metaprompt)",lines=5) automatic_metaprompt_button = gr.Button("Automatic Choice for Refinement Method ") #with gr.Row(elem_classes=["container2"]): MetaPrompt_analysis = gr.Markdown() # CONTAINER 3 # with gr.Column(elem_classes=["container"]): with gr.Column(elem_classes=["container","meta-container"]): meta_prompt_choice = gr.Radio( choices=metaprompt_list, label="Choose Meta Prompt", value=metaprompt_list[0], elem_classes=["no-background", "radio-group"] ) refine_button = gr.Button("Refine Prompt") with gr.Accordion("Metaprompt Explanation", open=False, visible=True): gr.Markdown(explanation_markdown) gr.Examples( examples=examples, inputs=[prompt_text, meta_prompt_choice] ) with gr.Column(elem_classes=["container", "analysis-container"]): gr.Markdown(" ") prompt_evaluation = gr.Markdown() # Added this component gr.Markdown("### Refined Prompt") refined_prompt = gr.Textbox( label=" ", interactive=True, show_label=True, show_copy_button=True, ) #gr.Markdown("### Explanation of Refinements") explanation_of_refinements = gr.Markdown() with gr.Column(elem_classes=["container", "model-container"]): with gr.Row(): apply_model = gr.Dropdown( choices=models, value=models[0] if models else None, label="Choose the Model", container=False, scale=1, min_width=300 ) apply_button = gr.Button("Apply Prompts") gr.Markdown("### Prompts on Chosen Model") with gr.Tabs(): with gr.TabItem("Original Prompt Output"): original_output = gr.Markdown() with gr.TabItem("Refined Prompt Output"): refined_output = gr.Markdown() with gr.Accordion("Full Response JSON", open=False, visible=True): full_response_json = gr.JSON() # Button click handlers automatic_metaprompt_button.click( fn=self.automatic_metaprompt, inputs=[prompt_text], outputs=[MetaPrompt_analysis, meta_prompt_choice] ) refine_button.click( fn=self.refine_prompt, inputs=[prompt_text, meta_prompt_choice], outputs=[ prompt_evaluation, refined_prompt, explanation_of_refinements, full_response_json ] ) apply_button.click( fn=self.apply_prompts, inputs=[prompt_text, refined_prompt, apply_model], outputs=[original_output, refined_output] ) gr.HTML( "

⚠ This space is in progress, and we're actively working on it, so you might find some bugs! Please report any issues you have in the Community tab to help us make it better for all.

" ) def automatic_metaprompt(self, prompt: str) -> tuple: """Handle automatic metaprompt selection""" try: if not prompt.strip(): return "Please enter a prompt to analyze.", None metaprompt_analysis, recommended_key = self.prompt_refiner.automatic_metaprompt(prompt) return metaprompt_analysis, recommended_key except Exception as e: error_message = f"Error in automatic metaprompt: {str(e)}" return error_message, None def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple: """Handle manual prompt refinement""" try: if not prompt.strip(): return ( "No prompt provided.", "", "", {} ) result = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice) return ( result[0], # initial_prompt_evaluation result[1], # refined_prompt result[2], # explanation_of_refinements result[3] # full_response ) except Exception as e: error_message = f"Error in refine_prompt: {str(e)}" return error_message, "", "", {} def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str) -> tuple: """Apply both original and refined prompts to the selected model""" try: if not original_prompt.strip() or not refined_prompt.strip(): return "No prompt provided.", "No prompt provided." original_output = self.prompt_refiner.apply_prompt(original_prompt, model) refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model) return original_output, refined_output except Exception as e: error_message = f"Error applying prompts: {str(e)}" return error_message, error_message def launch(self, share=False): """Launch the Gradio interface""" self.interface.launch(share=share) if __name__ == '__main__': from variables import api_token, meta_prompts, metaprompt_explanations # Initialize the prompt refiner prompt_refiner = PromptRefiner(api_token, meta_prompts, metaprompt_explanations) # Create and launch the Gradio interface gradio_interface = GradioInterface(prompt_refiner, custom_css) gradio_interface.launch(share=True)