import json import re from typing import Optional, Dict, Any, Union, List, Tuple from pydantic import BaseModel, Field, validator from huggingface_hub import InferenceClient from huggingface_hub.errors import HfHubHTTPError from variables import * from metaprompt_router import metaprompt_router class LLMResponse(BaseModel): initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt") refined_prompt: str = Field(..., description="The refined version of the prompt") explanation_of_refinements: Union[str, List[str]] = Field(..., description="Explanation of the refinements made") response_content: Optional[Union[Dict[str, Any], str]] = Field(None, description="Raw response content") @validator('response_content', pre=True) def validate_response_content(cls, v): if isinstance(v, str): try: return json.loads(v) except json.JSONDecodeError: return {"raw_content": v} return v @validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements') def clean_text_fields(cls, v): if isinstance(v, str): return v.strip().replace('\\n', '\n').replace('\\"', '"') elif isinstance(v, list): return [item.strip().replace('\\n', '\n').replace('\\"', '"').replace('•', '-') for item in v if isinstance(item, str)] return v class PromptRefiner: def __init__(self, api_token: str, meta_prompts: dict, metaprompt_explanations: dict): self.client = InferenceClient(token=api_token, timeout=120) self.meta_prompts = meta_prompts self.metaprompt_explanations = metaprompt_explanations def _clean_json_string(self, content: str) -> str: """Clean and prepare JSON string for parsing.""" content = content.replace('•', '-') content = re.sub(r'\s+', ' ', content) content = content.replace('\\"', '"') return content.strip() def _parse_response(self, response_content: str) -> dict: """Parse the LLM response with enhanced error handling.""" try: json_match = re.search(r'\s*(.*?)\s*', response_content, re.DOTALL) if json_match: json_str = self._clean_json_string(json_match.group(1)) try: parsed_json = json.loads(json_str) if isinstance(parsed_json, str): parsed_json = json.loads(parsed_json) prompt_analysis = f""" #### Original prompt analysis - {parsed_json.get("initial_prompt_evaluation", "")} """ explanation_of_refinements=f""" #### Refinement Explanation - {parsed_json.get("explanation_of_refinements", "")} """ return { "initial_prompt_evaluation": prompt_analysis, "refined_prompt": parsed_json.get("refined_prompt", ""), "explanation_of_refinements": explanation_of_refinements, "response_content": parsed_json } except json.JSONDecodeError: return self._parse_with_regex(json_str) return self._parse_with_regex(response_content) except Exception as e: print(f"Error parsing response: {str(e)}") return self._create_error_dict(str(e)) def _parse_with_regex(self, content: str) -> dict: """Parse content using regex when JSON parsing fails.""" output = {} refinements_match = re.search(r'"explanation_of_refinements":\s*$(.*?)$', content, re.DOTALL) if refinements_match: refinements_str = refinements_match.group(1) refinements = [ item.strip().strip('"').strip("'").replace('•', '-') for item in re.findall(r'[•"]([^"•]+)[•"]', refinements_str) ] output["explanation_of_refinements"] = refinements else: pattern = r'"explanation_of_refinements":\s*"(.*?)"(?:,|\})' match = re.search(pattern, content, re.DOTALL) output["explanation_of_refinements"] = match.group(1).strip() if match else "" for key in ["initial_prompt_evaluation", "refined_prompt"]: pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})' match = re.search(pattern, content, re.DOTALL) output[key] = match.group(1).strip() if match else "" output["response_content"] = {"raw_content": content} return output def _create_error_dict(self, error_message: str) -> dict: """Create a standardized error response dictionary.""" return { "initial_prompt_evaluation": f"Error parsing response: {error_message}", "refined_prompt": "", "explanation_of_refinements": "", "response_content": {"error": error_message} } def automatic_metaprompt(self, prompt: str) -> Tuple[str, str]: """Automatically select the most appropriate metaprompt.""" try: router_messages = [ { "role": "system", "content": "You are an AI Prompt Selection Assistant that helps choose the most appropriate metaprompt based on the user's query." }, { "role": "user", "content": metaprompt_router.replace("[Insert initial prompt here]", prompt) } ] router_response = self.client.chat_completion( model=prompt_refiner_model, messages=router_messages, max_tokens=3000, temperature=0.2 ) router_content = router_response.choices[0].message.content.strip() json_match = re.search(r'(.*?)', router_content, re.DOTALL) if not json_match: raise ValueError("No JSON found in router response") router_result = json.loads(json_match.group(1)) recommended_key = router_result["recommended_metaprompt"]["key"] metaprompt_analysis = f""" #### Selected MetaPrompt - **Primary Choice**: {router_result["recommended_metaprompt"]["name"]} - *Description*: {router_result["recommended_metaprompt"]["description"]} - *Why This Choice*: {router_result["recommended_metaprompt"]["explanation"]} - *Similar Sample*: {router_result["recommended_metaprompt"]["similar_sample"]} - *Customized Sample*: {router_result["recommended_metaprompt"]["customized_sample"]} #### Alternative Option - **Secondary Choice**: {router_result["alternative_recommendation"]["name"]} - *Why Consider This*: {router_result["alternative_recommendation"]["explanation"]} """ return metaprompt_analysis, recommended_key except Exception as e: return f"Error in automatic metaprompt: {str(e)}", "" def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]: """Refine the given prompt using the selected meta prompt.""" try: selected_meta_prompt = self.meta_prompts.get(meta_prompt_choice) selected_meta_prompt_explanations = self.metaprompt_explanations.get(meta_prompt_choice) messages = [ { "role": "system", "content": 'You are an expert at refining and extending prompts.' }, { "role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt) } ] response = self.client.chat_completion( model=prompt_refiner_model, messages=messages, max_tokens=3000, temperature=0.8 ) result = self._parse_response(response.choices[0].message.content.strip()) llm_response = LLMResponse(**result) llm_response_dico={} llm_response_dico['initial_prompt']=prompt llm_response_dico['meta_prompt']=meta_prompt_choice llm_response_dico=llm_response_dico | llm_response.dict() return ( llm_response.initial_prompt_evaluation, llm_response.refined_prompt, llm_response.explanation_of_refinements, llm_response_dico ) except Exception as e: return ( f"Error: {str(e)}", "", "", {} ) def _create_error_response(self, error_message: str) -> Tuple[str, str, str, str, dict]: """Create a standardized error response tuple.""" return ( # f"Error: {error_message}", f"Error: {error_message}", "The selected model is currently unavailable.", "An error occurred during processing.", {"error": error_message} ) def apply_prompt(self, prompt: str, model: str) -> str: """Apply formatting to the prompt using the specified model.""" try: messages = [ { "role": "system", "content": "You are a markdown formatting expert." }, { "role": "user", "content": prompt } ] response = self.client.chat_completion( model=model, messages=messages, max_tokens=3000, temperature=0.8, stream=True ) return "".join( chunk.choices[0].delta.content or "" for chunk in response ).strip() except Exception as e: return f"Error: {str(e)}"