Spaces:
Running
Running
File size: 16,158 Bytes
304227c 2819e15 304227c 0bb3006 2819e15 304227c 569890c 5f815d6 569890c 69ba8e8 304227c 2819e15 adb8bfe 0bb3006 2819e15 3114b44 0bb3006 2819e15 594fc9e 2819e15 515ea20 2819e15 2bfb23e 006bfbb 608dc33 006bfbb 2819e15 515ea20 006bfbb 2819e15 006bfbb 2819e15 006bfbb 2819e15 006bfbb 8100125 c90de13 8100125 006bfbb c90de13 8100125 c90de13 006bfbb c90de13 8100125 515ea20 8910331 4228b37 5e4f469 4228b37 5e4f469 304227c 2819e15 8100125 2819e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
from huggingface_hub.errors import HfHubHTTPError
from custom_css import custom_css
from variables import *
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = InferenceClient(token=api_token, timeout=300)
self.meta_prompts = {
"morphosis": original_meta_prompt,
"verse": new_meta_prompt,
"physics": metaprompt1,
"bolism": loic_metaprompt,
"done": metadone,
"star": echo_prompt_refiner,
"math": math_meta_prompt,
"arpe": autoregressive_metaprompt
}
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
try:
# Select meta prompt using dictionary instead of if-elif chain
selected_meta_prompt = self.meta_prompts.get(
prompt_input.meta_prompt_choice,
advanced_meta_prompt
)
messages = [
{
"role": "system",
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
},
{
"role": "user",
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=3000,
temperature=0.8
)
response_content = response.choices[0].message.content.strip()
# Parse the response
result = self._parse_response(response_content)
return (
result.get('initial_prompt_evaluation', ''),
result.get('refined_prompt', ''),
result.get('explanation_of_refinements', ''),
result
)
except HfHubHTTPError as e:
return (
"Error: Model timeout. Please try again later.",
"The selected model is currently experiencing high traffic.",
"The selected model is currently experiencing high traffic.",
{}
)
except Exception as e:
return (
f"Error: {str(e)}",
"",
"An unexpected error occurred.",
{}
)
def _parse_response(self, response_content: str) -> dict:
try:
# Try to find JSON in response
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
json_output = json.loads(f'"{json_str}"')
if isinstance(json_output, str):
json_output = json.loads(json_output)
output={
key: value.replace('\\"', '"') if isinstance(value, str) else value
for key, value in json_output.items()
}
output['response_content']=json_output
# Clean up JSON values
return output
# Fallback to regex parsing if no JSON found
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
output['response_content']=response_content
return output
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing response: {e}")
print(f"Raw content: {response_content}")
return {
"initial_prompt_evaluation": "Error parsing response",
"refined_prompt": "",
"explanation_of_refinements": str(e),
'response_content':str(e)
}
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{
"role": "system",
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
1. Paragraph Spacing:
- Add TWO blank lines between major sections (##)
- Add ONE blank line between subsections (###)
- Add ONE blank line between paragraphs within sections
- Add ONE blank line before and after lists
- Add ONE blank line before and after code blocks
- Add ONE blank line before and after blockquotes
2. Section Formatting:
# Title
## Major Section
[blank line]
Content paragraph 1
[blank line]
Content paragraph 2
[blank line]
### Subsection
[blank line]
Content
[blank line]
3. List Formatting:
[blank line]
- List item 1
- List item 2
- List item 3
[blank line]
4. JSON Output Structure:
{
"section_name": "
Content paragraph 1
Content paragraph 2
- List item 1
- List item 2
"
}
Transform content while maintaining clear visual separation between elements."""
},
{
"role": "user",
"content": prompt
}
]
# Use streaming for the response
response_stream = self.client.text_generation(
model=model,
messages=messages,
max_tokens=3000,
temperature=0.8,
stream=True
)
# Initialize an empty string to store the complete response
full_response = ""
# Process the stream
for response_chunk in response_stream:
if hasattr(response_chunk, 'token'):
chunk_text = response_chunk.token.text
full_response += chunk_text
yield full_response.replace('\n\n', '\n').strip()
except Exception as e:
yield f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner,custom_css):
self.prompt_refiner = prompt_refiner
custom_css = custom_css
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type your prompt (or let it empty to see metaprompt)",
# elem_classes="no-background",
#elem_classes="container2",
lines=5
)
meta_prompt_choice = gr.Radio(
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
# elem_classes=[ "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
# Option 1: Put Examples here (before Meta Prompt explanation)
with gr.Row(elem_classes=["container2"]):
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
],
inputs=[prompt_text, meta_prompt_choice]
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
# Option 2: Or put Examples here (after the button)
# with gr.Accordion("Examples", open=False):
# gr.Examples(...)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(' ')
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label="Refined Prompt",
interactive=True,
show_label=True, # Must be True for copy button to show
show_copy_button=True, # Adds the copy button
# elem_classes="no-background"
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
# gr.Markdown("## See MetaPrompt Impact")
with gr.Row():
apply_model = gr.Dropdown(models,
value="meta-llama/Llama-3.1-8B-Instruct",
label="Choose the Model",
container=False, # This removes the container around the dropdown
scale=1, # Controls the width relative to other components
min_width=300 # Sets minimum width in pixels
# elem_classes="no-background"
)
apply_button = gr.Button("Apply MetaPrompt")
# with gr.Column(elem_classes=["container", "results-container"]):
gr.Markdown("### Prompts on choosen model")
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
# In the __init__ method, modify the click event:
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output],
queue=True # Enable queuing for streaming
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
# Since result is a tuple with 4 elements based on the return value of prompt_refiner.refine_prompt
initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(input_data)
analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
return (
analysis_evaluation,
refined_prompt,
explanation_refinements,
full_response
)
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
def stream_generator():
for response in self.prompt_refiner.apply_prompt(original_prompt, model):
yield response, ""
for response in self.prompt_refiner.apply_prompt(refined_prompt, model):
current_output = yield "", response
return stream_generator()
def launch(self, share=False):
self.interface.launch(share=share)
#explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
'''
meta_info=""
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
raise ValueError("HF_API_TOKEN not found in environment variables")
metadone = os.getenv('metadone')
prompt_refiner_model = os.getenv('prompt_refiner_model')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')
loic_metaprompt = os.getenv('loic_metaprompt')
openai_metaprompt = os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')
new_meta_prompt = os.getenv('new_meta_prompt')
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
math_meta_prompt = os.getenv('metamath')
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
'''
if __name__ == '__main__':
prompt_refiner = PromptRefiner(api_token)
gradio_interface = GradioInterface(prompt_refiner,custom_css)
gradio_interface.launch(share=True) |