Spaces:
Running
Running
File size: 10,244 Bytes
304227c ed4644b 304227c ed4644b 304227c 30a5039 ed4644b 304227c 364cdfe 304227c 364cdfe 304227c 0628bc1 c70bd7e 304227c ed4644b 304227c ed4644b 304227c 30a5039 ed4644b 304227c 561b6c3 5626857 9867909 304227c 2db28ae 304227c c2dc7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
import json
import re
import json
import re
from huggingface_hub import InferenceClient
from pydantic import BaseModel, Field
from typing import Optional, Literal
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = InferenceClient(token=api_token)
def refine_prompt(self, prompt_input: PromptInput) -> RefinementOutput:
if prompt_input.meta_prompt_choice == "morphosis":
selected_meta_prompt = original_meta_prompt
elif prompt_input.meta_prompt_choice == "verse":
selected_meta_prompt = new_meta_prompt
elif prompt_input.meta_prompt_choice == "physics":
selected_meta_prompt = metaprompt1
elif prompt_input.meta_prompt_choice == "bolism":
selected_meta_prompt = loic_metaprompt
elif prompt_input.meta_prompt_choice == "done":
selected_meta_prompt = metadone
elif prompt_input.meta_prompt_choice == "star":
selected_meta_prompt = echo_prompt_refiner
else:
selected_meta_prompt = advanced_meta_prompt
messages = [
{"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
]
response = self.client.chat_completion(
model="meta-llama/Meta-Llama-3-70B-Instruct",
messages=messages,
max_tokens=4000,
temperature=0.3
)
response_content = response.choices[0].message.content.strip()
try:
# Extract JSON from between <json> tags
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
# Remove newlines and escape quotes within the JSON string
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
# Wrap the entire string in quotes and parse it
json_output = json.loads(f'"{json_str}"')
# Ensure json_output is a dictionary
if isinstance(json_output, str):
json_output = json.loads(json_output)
# Unescape the parsed JSON
for key, value in json_output.items():
if isinstance(value, str):
json_output[key] = value.replace('\\"', '"')
return RefinementOutput(**json_output, raw_content=response_content)
else:
raise ValueError("No JSON found in the response")
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing JSON: {e}")
print(f"Raw content: {response_content}")
# If JSON parsing fails, attempt to extract the content manually
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
if match:
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
else:
output[key] = "" # Set empty string if content not found
return RefinementOutput(**output, raw_content=response_content)
def apply_prompt(self, prompt: str) -> str:
try:
messages = [
{"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
{"role": "user", "content": prompt}
]
response = self.client.chat_completion(
model="meta-llama/Meta-Llama-3-70B-Instruct",
messages=messages,
max_tokens=4000, # Increased token limit
temperature=0.8
)
output = response.choices[0].message.content.strip()
# Basic post-processing
output = output.replace('\n\n', '\n').strip()
return output
except Exception as e:
return f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner):
self.prompt_refiner = prompt_refiner
with gr.Blocks() as self.interface:
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts. Enter a main idea for a prompt, choose a meta prompt, and the model will attempt to generate an improved version.")
with gr.Row():
prompt_text = gr.Textbox(label="Type the prompt here")
with gr.Row():
meta_prompt_choice = gr.Radio(["star","done","physics","morphosis", "verse", "phor","bolism"], label="Choose Meta Prompt", value="morphosis")
refine_button = gr.Button("Refine Prompt")
with gr.Row():
gr.Markdown("### Initial prompt analysis")
with gr.Column():
analysis_evaluation = gr.Markdown(label="Analysis and Evaluation")
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(label="Refined Prompt")
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")
with gr.Accordion("Full Response JSON", open=False):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
with gr.Row():
# apply_model=gr.Dropdown(["meta-llama/Llama-3.1-70B-Instruct",'Qwen/Qwen2.5-72B-Instruct'], value="meta-llama/Llama-3.1-70B-Instruct", label="Model"),
apply_button = gr.Button("Apply Prompts")
with gr.Row():
with gr.Column():
gr.Markdown("### Original Prompt Output")
original_output = gr.Markdown(label="Original Prompt Output")
with gr.Column():
gr.Markdown("### Refined Prompt Output")
refined_output = gr.Markdown(label="Refined Prompt Output")
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt],
outputs=[original_output, refined_output]
)
gr.Examples(
examples=[
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Write a story.", "bolism"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "star"],
],
inputs=[prompt_text, meta_prompt_choice]
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
result = self.prompt_refiner.refine_prompt(input_data)
analysis_evaluation = f"\n\n{result.initial_prompt_evaluation}"
return (
analysis_evaluation,
result.refined_prompt,
result.explanation_of_refinements,
result.dict()
)
def apply_prompts(self,original_prompt: str, refined_prompt: str):
original_output = self.prompt_refiner.apply_prompt(original_prompt)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt)
return original_output, refined_output
def launch(self, share=False):
self.interface.launch()
# Main code to run the application
if __name__ == '__main__':
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
raise ValueError("HF_API_TOKEN not found in environment variables")
metadone=os.getenv('metadone')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')
loic_metaprompt = os.getenv('loic_metaprompt')
openai_metaprompt=os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')
new_meta_prompt = os.getenv('new_meta_prompt')
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
prompt_refiner = PromptRefiner(api_token)
gradio_interface = GradioInterface(prompt_refiner)
gradio_interface.launch(share=True) |