File size: 35,205 Bytes
304227c
 
 
 
 
 
 
 
30a5039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a5039
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a5039
 
304227c
 
 
 
 
 
 
 
 
 
364cdfe
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364cdfe
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ccdc61
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a5039
304227c
 
 
 
 
 
30a5039
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal


metadone="""
As an AI Prompt Enhancement Specialist, your mission is to elevate the given prompt using state-of-the-art prompting techniques while emphasizing the utilization of previously generated context. Analyze the input prompt and apply the following comprehensive approach to enhance it:

1. Role and Expertise Definition:
   Assume the role of a "Multidisciplinary Prompt Engineering Expert" with deep knowledge in:
   a) The subject matter of the input prompt
   b) Linguistic principles and natural language processing
   c) Cognitive science and reasoning methodologies
   d) AI systems and their response patterns

2. Structured Output Generation with Iterative Refinement:
   Design a prompt structure that builds upon previous sections and incorporates iterative improvement:
   a) Initial Analysis
   b) Preliminary Enhancement (referencing the analysis)
   c) Intermediate Evaluation (critiquing the enhancement)
   d) Advanced Refinement (building on evaluation)
   e) Final Optimization (synthesizing all previous steps)
   f) Meta-Review (analyzing the entire process)

3. Multi-Technique Integration:
   Combine the following techniques to create a synergistic prompt engineering approach:
   
   a) Chain-of-Thought (CoT) and Zero-Shot CoT:
      - Incorporate explicit reasoning steps
      - Provide guidance for handling unfamiliar tasks
      - Example: "To enhance this prompt, first analyze its structure, then identify areas for improvement by considering..."

   b) Tree of Thoughts (ToT):
      - Create a branching structure for exploring multiple enhancement paths
      - Evaluate each branch using a defined criterion
      - Example: "Consider three potential directions for improvement: 1) Clarity, 2) Specificity, 3) Context utilization. For each direction..."

   c) Least-to-Most Prompting:
      - Break down complex aspects into manageable sub-tasks
      - Build complexity gradually
      - Example: "Start by simplifying the core request, then add layers of detail and context requirements..."

   d) ReAct Prompting:
      - Alternate between reasoning and acting steps
      - Incorporate self-reflection after each action
      - Example: "Reason: The prompt lacks specific instructions for context utilization. Action: Add a section on context referencing. Reflection: Evaluate if the added section improves coherence..."

   e) Multimodal CoT Prompting:
      - If applicable, integrate instructions for handling multiple modalities (text, images, etc.)
      - Provide reasoning steps for each modality
      - Example: "When enhancing prompts involving image analysis, consider the following steps..."

   f) Generated Knowledge Prompting:
      - Incorporate instructions for the AI to generate relevant background knowledge
      - Use this knowledge to inform the prompt enhancement process
      - Example: "Before enhancing the prompt, generate a brief overview of key concepts in the subject area. Use this knowledge to..."

   g) Graph Prompting:
      - Create a conceptual graph of the prompt's components and their relationships
      - Use this graph to identify areas for enhancement and connection
      - Example: "Map out the main elements of the prompt as nodes, with edges representing relationships. Identify weak connections and enhance them by..."

4. Linguistic Optimization:
   Apply linguistic principles to refine the prompt's structure and clarity:
   a) Use clear, concise language
   b) Employ parallel structure for related concepts
   c) Incorporate rhetorical devices for emphasis
   d) Ensure logical flow and coherence

5. Mathematical Representation (if applicable):
   If the prompt involves quantitative elements, incorporate mathematical notation to enhance precision:
   a) Use set theory to define scope
   b) Employ logical operators for conditional instructions
   c) Utilize probability notation for uncertainty handling

6. Evaluation Metrics Integration:
   Incorporate instructions for self-evaluation using relevant metrics:
   a) BLEU score for language quality
   b) BERTScore for semantic similarity
   c) ROUGE for summary quality
   d) Perplexity for response predictability

7. Synergy Exploitation:
   Leverage the synergies between AI, Linguistics, and Prompt Engineering:
   a) Use AI-specific language patterns
   b) Incorporate linguistic cues that enhance AI comprehension
   c) Design prompts that align with AI reasoning processes

8. Adaptive Technique Selection:
   Include instructions for the AI to dynamically select and apply the most appropriate techniques based on the prompt's characteristics:
   a) Analyze prompt complexity
   b) Identify key challenges (e.g., ambiguity, lack of context)
   c) Select and apply relevant techniques from the available set

9. Meta-Learning Integration:
   Incorporate steps for the AI to learn from the prompt enhancement process:
   a) Analyze successful enhancements
   b) Identify patterns in effective prompt structures
   c) Apply learned insights to future prompt improvements

Now, apply these advanced techniques to improve the following prompt:

[Insert initial prompt here]

Follow these steps to generate an enhanced version of the prompt:

1. Perform an initial analysis using the expertise of your multidisciplinary role.
2. Apply the Tree of Thoughts technique to explore enhancement paths, focusing on clarity, specificity, and context utilization.
3. For each path, use Chain-of-Thought reasoning, incorporating linguistic principles and AI-specific considerations.
4. Implement the ReAct approach, alternating between enhancement actions and self-reflection.
5. Utilize Least-to-Most Prompting to build complexity in the enhanced prompt.
6. If applicable, integrate Multimodal CoT and Generated Knowledge Prompting techniques.
7. Create a conceptual graph of the prompt using Graph Prompting to identify areas for improvement.
8. Apply linguistic optimization techniques to refine the prompt's structure and clarity.
9. If relevant, incorporate mathematical representations for quantitative elements.
10. Include self-evaluation instructions using the specified metrics.
11. Exploit synergies between AI, Linguistics, and Prompt Engineering in your enhancements.
12. Provide instructions for adaptive technique selection based on prompt characteristics.
13. Integrate meta-learning steps for continuous improvement.

Present the final enhanced prompt, along with a detailed explanation of:
1. Key improvements made
2. Techniques applied and their rationale
3. Expected impact on AI response quality and context utilization
4. Potential limitations or areas for further refinement

Ensure that the enhanced prompt:
1. Maintains and amplifies the original intent
2. Significantly improves effectiveness, clarity, and precision
3. Maximizes the leverage of previously generated context
4. Includes explicit instructions for dynamic, adaptive reasoning processes
5. Creates a cohesive, interconnected, and self-improving response framework

Your enhanced prompt should guide the AI to generate a response that not only addresses the original query but also demonstrates advanced reasoning, contextual awareness, and continuous self-improvement throughout the response generation process.

Only provide the output in the following JSON format enclosed in <json> tags:
<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string as bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explain techniques used and improvements made, including the extract of final prompt where it used. Answer in a string "
}
</json>
"""
# Define the metaprompts
metaprompt1 = """
As an AI Prompt Enhancement Specialist, your task is to improve the given prompt using advanced prompting techniques while emphasizing the use of previously generated context. Analyze the input prompt and apply the following steps to enhance it:

1. Role Prompting: Assume the role of an "Expert Prompt Analyst and Optimizer" with deep knowledge in the subject matter of the input prompt.

2. Structured Output Generation: Design a prompt structure that builds upon previous sections:
   a) Introduction
   b) Key Points (referencing the introduction)
   c) Detailed Analysis (expanding on key points and referencing previous sections)
   d) Conclusion (summarizing and synthesizing all previous content)
   e) Final Review and Refinement

3. Few-Shot Prompting: Provide 2-3 relevant examples demonstrating the desired output format, reasoning, and effective use of previous context.

4. Chain-of-Thought (CoT) and Zero-Shot CoT: Incorporate step-by-step reasoning in your instructions, explaining the thought process for each enhancement and how to handle unfamiliar tasks.

5. Self-Consistency: Generate multiple reasoning paths and select the most consistent one for the final improved prompt.

6. Least-to-Most Prompting: Break down complex aspects of the prompt into smaller, manageable sub-tasks that build upon each other.

7. Tree-of-Thought: Create a branching structure for exploring multiple improvement paths simultaneously, considering different aspects of the prompt.

8. Prompt Paraphrasing: Rephrase key instructions in multiple ways to ensure clarity and comprehension.

9. Self-Calibration: Include steps for the AI to assess its own confidence in the generated output and adjustments.

10. Self-Refine: Implement an iterative process for the AI to improve its initial response to the prompt enhancement task.

11. Self-Verification and Chain-of-Verification (COVE): Add verification steps to check the logical consistency, effectiveness, and fulfillment of all requirements in the improved prompt.

12. Cumulative Reasoning: Build upon previous enhancements, accumulating improvements throughout the process.

13. Style Prompting: Adjust the language style of the prompt to match the intended audience or purpose.

14. Emotion Prompting: Incorporate language that emphasizes the importance and impact of the task described in the prompt.

15. System 2 Attention (S2A): Guide the AI to focus on specific critical aspects of the prompt that require careful consideration.

16. Rephrase and Respond (RaR): After each major enhancement, instruct the AI to rephrase the prompt and respond to it to test its effectiveness.

17. Re-reading (RE2): Instruct the AI to re-read the original and enhanced prompts multiple times to catch nuances and potential improvements.

18. Self-Ask: Encourage the AI to ask itself questions about the prompt's clarity, effectiveness, and potential weaknesses, especially in relation to using previous context.

19. Automatic Chain-of-Thought (Auto-CoT): Generate intermediate reasoning steps automatically to support the prompt enhancement process.

20. Program-of-Thoughts: Structure the prompt improvement process as a series of logical operations or a program-like sequence.

21. Skeleton-of-Thought: Create a basic structure or skeleton for the enhanced prompt, then iteratively fill in the details.

22. Mixture of Reasoning Experts (MoRE): Combine insights from multiple expert perspectives (e.g., subject matter expert, language specialist, task optimization expert) to enhance the prompt.

23. Max Mutual Information Method: Optimize the prompt to maximize the mutual information between the input and desired output.

Now, apply these techniques to improve the following prompt:

Initial Prompt: [Insert initial prompt here]

Follow these steps to generate an enhanced version of the prompt:

1. Analyze the original prompt, identifying its main objectives, strengths, and weaknesses.
2. Apply the role of an Expert Prompt Analyst and Optimizer, considering the subject matter.
3. Design a structured output format that encourages use of previous context.
4. Use the Tree-of-Thought technique to explore multiple enhancement paths.
5. For each path, apply Chain-of-Thought reasoning to explain the enhancements.
6. Incorporate Few-Shot examples to illustrate the desired outcome and effective use of previous context.
7. Break down complex aspects using Least-to-Most Prompting.
8. Rephrase key instructions using Prompt Paraphrasing.
9. Adjust the language style and incorporate emotional elements as appropriate.
10. Implement Self-Verification and Chain-of-Verification steps.
11. Use Self-Ask to critically evaluate the enhancements, especially regarding context usage.
12. Apply the Skeleton-of-Thought technique to structure the improved prompt.
13. Utilize the Mixture of Reasoning Experts approach to refine the prompt from multiple perspectives.
14. Employ the Max Mutual Information Method to optimize the prompt's effectiveness.
15. Use Self-Calibration to assess the confidence in the final enhanced prompt.
16. Apply Self-Refine to iteratively improve the enhanced prompt.

Present the final enhanced prompt, along with a brief explanation of the key improvements and techniques used. Ensure that the enhanced prompt:
1. Maintains the original intent
2. Significantly improves effectiveness and clarity
3. Effectively leverages previously generated context
4. Includes explicit instructions for the AI to refer back to and build upon its own previous outputs
5. Creates a cohesive and interconnected result

Your enhanced prompt should guide the AI to generate a response that not only addresses the original query but also demonstrates a clear progression of thought and utilization of previously generated information throughout the response.

Only provide the output in the following JSON format enclosed in <json> tags:
<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string as bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explain techniques used and improvements made, including the extract of final prompt where it used. Answer in a string "
}
</json>
"""


loic_metaprompt = """
Given an initial prompt:

Initial Prompt: [Insert initial prompt here]

Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Leverage Autoregressive Nature: Strategically order information to prime the model for better results. Generate key concepts, context, or vocabulary early in the prompt to inform later reasoning and outputs.
- Reasoning Before Conclusions: Encourage reasoning steps before any conclusions are reached. If user examples show reasoning afterward, reverse the order. Never start examples with conclusions.
    - Reasoning Order: Identify reasoning and conclusion parts. Determine their order and reverse if needed. Conclusions, classifications, or results should always appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - Assess example needs, quantity, and complexity for potential placeholder use.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. Avoid code blocks unless requested.
- Preserve User Content: Retain extensive guidelines or examples from input. Break down vague instructions into sub-steps. Maintain user-provided details, guidelines, examples, variables, or placeholders.
- Constants: Include constants (guides, rubrics, examples) as they resist prompt injection.
- Output Format: Specify appropriate output format in detail, including length and syntax.
    - For structured data, prefer JSON output (unwrapped unless requested).

The final prompt should follow this structure, with no additional commentary:
Leverage Autoregressive Nature: Strategically order information to prime the model for better results. Generate key concepts, context, or vocabulary early in the prompt to inform later reasoning and outputs.

[Concise task instruction - first line, no header]

[Additional details as needed]

[Optional sections with headings or bullet points for detailed steps]

# Context Generation

[Instructions for generating key concepts, vocabulary, or context to inform later reasoning]

# Steps [optional]

[Detailed task breakdown]

# Reasoning Process

[Specific instructions for the reasoning process, ensuring it precedes conclusions]

# Output Format

[Detailed output format specifications]

# Examples [optional]

[1-3 well-defined examples with placeholders if necessary. Mark input/output clearly. Use placeholders and indicate if real examples differ in length/complexity]

# Notes [optional]

[Edge cases, important considerations, repeated key points]

Only provide the output in the following JSON format enclosed in <json> tags:

<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string",
"refined_prompt": "Your refined prompt into quote",
"explanation_of_refinements": "Explanation of the techniques used and improvements made, also include the extract of final prompt where it made.Answer in bullet points if accurate"
}
</json>
"""

openai_metaprompt='''
Given a task description or existing prompt, produce a detailed system prompt to guide a language model in completing the task effectively.

# Guidelines

- Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Reasoning Before Conclusions**: Encourage reasoning steps before any conclusions are reached. ATTENTION! If the user provides examples where the reasoning happens afterward, REVERSE the order! NEVER START EXAMPLES WITH CONCLUSIONS!
    - Reasoning Order: Call out reasoning portions of the prompt and conclusion parts (specific fields by name). For each, determine the ORDER in which this is done, and whether it needs to be reversed.
    - Conclusion, classifications, or results should ALWAYS appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - What kinds of examples may need to be included, how many, and whether they are complex enough to benefit from placeholders.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. DO NOT USE ``` CODE BLOCKS UNLESS SPECIFICALLY REQUESTED.
- Preserve User Content: If the input task or prompt includes extensive guidelines or examples, preserve them entirely, or as closely as possible. If they are vague, consider breaking down into sub-steps. Keep any details, guidelines, examples, variables, or placeholders provided by the user.
- Constants: DO include constants in the prompt, as they are not susceptible to prompt injection. Such as guides, rubrics, and examples.
- Output Format: Explicitly the most appropriate output format, in detail. This should include length and syntax (e.g. short sentence, paragraph, JSON, etc.)
    - For tasks outputting well-defined or structured data (classification, JSON, etc.) bias toward outputting a JSON.
    - JSON should never be wrapped in code blocks (```) unless explicitly requested.

The final prompt you output should adhere to the following structure below. Do not include any additional commentary, only output the completed system prompt. SPECIFICALLY, do not include any additional messages at the start or end of the prompt. (e.g. no "---")

[Concise instruction describing the task - this should be the first line in the prompt, no section header]

[Additional details as needed.]

[Optional sections with headings or bullet points for detailed steps.]

# Steps [optional]

[optional: a detailed breakdown of the steps necessary to accomplish the task]

# Output Format

[Specifically call out how the output should be formatted, be it response length, structure e.g. JSON, markdown, etc]

# Examples [optional]

[Optional: 1-3 well-defined examples with placeholders if necessary. Clearly mark where examples start and end, and what the input and output are. User placeholders as necessary.]
[If the examples are shorter than what a realistic example is expected to be, make a reference with () explaining how real examples should be longer / shorter / different. AND USE PLACEHOLDERS! ]

# Notes [optional]

[optional: edge cases, details, and an area to call or repeat out specific important considerations]

Only provide the output in the following JSON format enclosed in <json> tags:

<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string on markdown bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explanation of the techniques used and improvements made, also include the extract of final prompt where it made. Answer in bullet points if accurate"
}
</json>
'''
original_meta_prompt = '''Create an effective prompt from this one:

Initial Prompt: [Insert initial prompt here]

Use these simple steps:

1. Look at the task closely, focusing on goals, needs, and limits.
2. Make prompts better by making language clear without changing the main idea.
3. Keep a logical flow by putting reasoning steps first.
4. Use good examples with [placeholders] for tricky parts.
5. Use simple words; remove unneeded instructions.
6. Use markdown for easy reading; skip code blocks unless needed.
7. Keep user content like guides and examples.
8. Add constants like guides and rubrics.
9. Clearly state output format including structure and syntax.

Only provide the output in the following JSON format enclosed in <json> tags:

<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string as bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explanation of the techniques used and improvements made, also include the extract of final prompt where it made. Answer in bullet points if accurate"
}
</json>
'''

new_meta_prompt = '''Given an initial prompt:

Initial Prompt: [Insert initial prompt here]

follow these steps to refine the prompt:

1. Analyze the prompt:
   - Identify the main topic and key concepts
   - Determine the type of task (e.g., math problem, logical reasoning, factual question)
   - Assess the complexity and any specific requirements

2. Evaluate the initial prompt:
   - Determine its strengths and weaknesses in relation to the query
   - Identify any missing elements or irrelevant information

3. Refine the prompt:
   - Retain relevant parts of the initial prompt
   - Add query-specific context or information
   - Incorporate appropriate reasoning frameworks (e.g., step-by-step, chain-of-thought)
   - Ensure clear instructions for the desired output format

4. Optimize for information flow:
   - Ensure the refined prompt allows for direct use of query information
   - Enable indirect information aggregation through prompt-guided reasoning

5. Enhance versatility:
   - Add elements that encourage flexible thinking and problem-solving
   - Include self-evaluation or error-checking instructions if appropriate

6. Formulate the refined prompt:
   - Combine all elements into a clear, concise, and effective prompt
   - Ensure the language and structure are appropriate for the task

7. Output the refined prompt:
   - Present the new prompt, highlighting key changes or additions

Only provide the output in the following JSON format enclosed in <json> tags:

<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string as bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explanation of the techniques used and improvements made, also include the extract of final prompt where it made. Answer in bullet points if accurate"
}
</json>
'''

advanced_meta_prompt = '''
You are an expert in natural language processing and state-of-the-art prompt engineering. Your task is to refine and improve the given prompt using advanced prompt engineering techniques.

Initial Prompt: [Insert initial prompt here]

Analyze the initial prompt and generate an improved version. Apply various prompt engineering techniques to enhance clarity, specificity, and effectiveness. Consider techniques such as:

1. Clarity and Specificity
2. Structural Improvement
3. Conciseness
4. Ambiguity Resolution
5. Instruction Refinement
6. Query Focusing
7. Task Decomposition
8. Role-Playing
9. Chain-of-Thought
10. Few-Shot Learning
11. Constrained Generation
12. Metacognitive Prompting
13. Contextual Priming
14. Negative Prompting
15. Output Format Control
16. Emotional Tone Setting
17. Iterative Refinement
18. Analogical Reasoning
19. Perspective Shifting

Only provide the output in the following JSON format enclosed in <json> tags:

<json>
{
"initial_prompt_evaluation": "Your evaluation of the initial prompt with Strengths and Weaknesses in a string as bullet points format",
"refined_prompt": "Your refined prompt",
"explanation_of_refinements": "Explanation of the techniques used and improvements made, also include the extract of final prompt where it made. Answer in bullet points if accurate"
}
</json>
'''

import json
import re
import json
import re
from huggingface_hub import InferenceClient
from pydantic import BaseModel, Field
from typing import Optional, Literal

class PromptInput(BaseModel):
    text: str = Field(..., description="The initial prompt text")
    meta_prompt_choice: Literal["done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")

class RefinementOutput(BaseModel):
    query_analysis: Optional[str] = None
    initial_prompt_evaluation: Optional[str] = None
    refined_prompt: Optional[str] = None
    explanation_of_refinements: Optional[str] = None
    raw_content: Optional[str] = None

class PromptRefiner:
    def __init__(self, api_token: str):
        self.client = InferenceClient(token=api_token)

    def refine_prompt(self, prompt_input: PromptInput) -> RefinementOutput:
        if prompt_input.meta_prompt_choice == "morphosis":
            selected_meta_prompt = original_meta_prompt
        elif prompt_input.meta_prompt_choice == "verse":
            selected_meta_prompt = new_meta_prompt
        elif prompt_input.meta_prompt_choice == "physics":
            selected_meta_prompt = metaprompt1
        elif prompt_input.meta_prompt_choice == "bolism":
            selected_meta_prompt = loic_metaprompt
        elif prompt_input.meta_prompt_choice == "done":
            selected_meta_prompt = metadone
        else:
            selected_meta_prompt = advanced_meta_prompt
    
        messages = [
            {"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
            {"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
        ]
        response = self.client.chat_completion(
            model="meta-llama/Meta-Llama-3-70B-Instruct",
            messages=messages,
            max_tokens=4000,
            temperature=0.3
        )
        response_content = response.choices[0].message.content.strip()
        try:
            # Extract JSON from between <json> tags
            json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
                # Remove newlines and escape quotes within the JSON string
                json_str = re.sub(r'\n\s*', ' ', json_str)
                json_str = json_str.replace('"', '\\"')
                # Wrap the entire string in quotes and parse it
                json_output = json.loads(f'"{json_str}"')
                # Ensure json_output is a dictionary
                if isinstance(json_output, str):
                    json_output = json.loads(json_output)
                # Unescape the parsed JSON
                for key, value in json_output.items():
                    if isinstance(value, str):
                        json_output[key] = value.replace('\\"', '"')
                return RefinementOutput(**json_output, raw_content=response_content)
            else:
                raise ValueError("No JSON found in the response")
        except (json.JSONDecodeError, ValueError) as e:
            print(f"Error parsing JSON: {e}")
            print(f"Raw content: {response_content}")
            # If JSON parsing fails, attempt to extract the content manually
            output = {}
            for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
                pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
                match = re.search(pattern, response_content, re.DOTALL)
                if match:
                    output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
                else:
                    output[key] = "" # Set empty string if content not found
            return RefinementOutput(**output, raw_content=response_content)
                
    def apply_prompt(self, prompt: str) -> str:
        try:
            messages = [
                {"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
                {"role": "user", "content": prompt}
            ]

            response = self.client.chat_completion(
                model="meta-llama/Meta-Llama-3-70B-Instruct",
                messages=messages,
                max_tokens=4000, # Increased token limit
                temperature=0.8
            )

            output = response.choices[0].message.content.strip()
            # Basic post-processing
            output = output.replace('\n\n', '\n').strip()
            return output
        except Exception as e:
            return f"Error: {str(e)}"

class GradioInterface:
    def __init__(self, prompt_refiner: PromptRefiner):
        self.prompt_refiner = prompt_refiner

        with gr.Blocks() as self.interface:
            gr.Markdown("# PROMPT++")
            gr.Markdown("### Refine your Prompts: Learn how to generate an improved version of your prompts")
            gr.Markdown("Enter a main idea for a prompt, choose a meta prompt, and the model will attempt to generate an improved version.")

            with gr.Row():
                prompt_text = gr.Textbox(label="Type the prompt here")
            with gr.Row():
                meta_prompt_choice = gr.Radio(["done","physics","morphosis", "verse", "phor","bolism"], label="Choose Meta Prompt", value="morphosis")
                refine_button = gr.Button("Refine Prompt")
            with gr.Row():
                gr.Markdown("### Initial prompt analysis")
            with gr.Column():
                analysis_evaluation = gr.Markdown(label="Analysis and Evaluation")
                gr.Markdown("### Refined Prompt")
                refined_prompt = gr.Textbox(label="Refined Prompt")
                gr.Markdown("### Explanation of Refinements")
                explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")

            with gr.Accordion("Full Response JSON", open=False):
                full_response_json = gr.JSON()

            refine_button.click(
                fn=self.refine_prompt,
                inputs=[prompt_text, meta_prompt_choice],
                outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
            )
            with gr.Row():
            #    apply_model=gr.Dropdown(["meta-llama/Llama-3.1-70B-Instruct",'Qwen/Qwen2.5-72B-Instruct'], value="meta-llama/Llama-3.1-70B-Instruct", label="Model"),
                apply_button = gr.Button("Apply Prompts")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Original Prompt Output")
                    original_output = gr.Markdown(label="Original Prompt Output")
                with gr.Column():
                    gr.Markdown("### Refined Prompt Output")
                    refined_output = gr.Markdown(label="Refined Prompt Output")

            apply_button.click(
                fn=self.apply_prompts,
                inputs=[prompt_text, refined_prompt],
                outputs=[original_output, refined_output]
            )

            gr.Examples(
                examples=[
                    ["Tell me about that guy who invented the light bulb", "physics"],
                    ["Explain the universe.", "done"],
                    ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
                    ["List American presidents.", "verse"],
                    ["Write a story.", "bolism"],
                    ["Explain why the experiment failed.", "morphosis"],
                    ["Is nuclear energy good?", "verse"],
                    ["How does a computer work?", "phor"],
                    ["How to make money fast?", "done"],
                    ["how can you  prove IT0's lemma in stochastic calculus ?", "verse"],                    
                ],
                inputs=[prompt_text, meta_prompt_choice]
            )

                
    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
        input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
        result = self.prompt_refiner.refine_prompt(input_data)
        analysis_evaluation = f"\n\n{result.initial_prompt_evaluation}"
        return (
            analysis_evaluation,
            result.refined_prompt,
            result.explanation_of_refinements,
            result.dict()
        )

    def apply_prompts(self,original_prompt: str, refined_prompt: str):
        original_output = self.prompt_refiner.apply_prompt(original_prompt)
        refined_output = self.prompt_refiner.apply_prompt(refined_prompt)
        return original_output, refined_output

    def launch(self):
        self.interface.launch()

# Main code to run the application
if __name__ == '__main__':
    api_token = os.getenv('HF_API_TOKEN')
    if not api_token:
        raise ValueError("HF_API_TOKEN not found in environment variables")

    prompt_refiner = PromptRefiner(api_token)
    gradio_interface = GradioInterface(prompt_refiner)
    gradio_interface.launch()