Spaces:
Sleeping
Sleeping
Upload 17 files
Browse files- app.py +40 -12
- utils/__pycache__/entity_extraction.cpython-38.pyc +0 -0
- utils/__pycache__/models.cpython-38.pyc +0 -0
- utils/__pycache__/retriever.cpython-38.pyc +0 -0
- utils/__pycache__/transcript_retrieval.cpython-38.pyc +0 -0
- utils/entity_extraction.py +6 -4
- utils/retriever.py +2 -0
- utils/transcript_retrieval.py +10 -21
app.py
CHANGED
@@ -59,6 +59,12 @@ decoder_models_choice = ["GPT-3.5 Turbo", "Vicuna-7B"]
|
|
59 |
with st.sidebar:
|
60 |
st.subheader("Select Options:")
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
num_results = int(
|
63 |
st.number_input("Number of Results to query", 1, 15, value=4)
|
64 |
)
|
@@ -74,7 +80,6 @@ with st.sidebar:
|
|
74 |
)
|
75 |
)
|
76 |
|
77 |
-
use_bm25 = st.checkbox("Use 2-Stage Retrieval (BM25)", value=True)
|
78 |
num_candidates = int(
|
79 |
st.number_input(
|
80 |
"Number of Candidates to Generate:",
|
@@ -84,9 +89,6 @@ with st.sidebar:
|
|
84 |
value=50,
|
85 |
)
|
86 |
)
|
87 |
-
decoder_model = st.selectbox(
|
88 |
-
"Select Text Generation Model", decoder_models_choice
|
89 |
-
)
|
90 |
|
91 |
|
92 |
col1, col2 = st.columns([3, 3], gap="medium")
|
@@ -94,9 +96,10 @@ col1, col2 = st.columns([3, 3], gap="medium")
|
|
94 |
with col1:
|
95 |
query_text = st.text_area(
|
96 |
"Input Query",
|
97 |
-
value="How has the growth been for AMD in the PC market in 2020?",
|
98 |
)
|
99 |
|
|
|
100 |
# Extracting Document Entities from Question
|
101 |
(
|
102 |
companies,
|
@@ -116,11 +119,28 @@ ticker_year_quarter_tuples_list = ticker_year_quarter_tuples_creator(
|
|
116 |
ticker_list, year_quarter_range_list
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Extract keywords from query
|
121 |
all_keywords = extract_entities_keywords(query_text, vicuna_ner_2_model)
|
122 |
if all_keywords != []:
|
123 |
keywords = clean_keywords_all_combs(all_keywords)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
else:
|
125 |
keywords = None
|
126 |
|
@@ -135,9 +155,7 @@ pinecone.init(
|
|
135 |
pinecone_index_name = "week13-instructor-xl"
|
136 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
137 |
retriever_model = get_instructor_embedding_model_api()
|
138 |
-
instruction =
|
139 |
-
"Represent the financial question for retrieving supporting documents:"
|
140 |
-
)
|
141 |
|
142 |
|
143 |
dense_query_embedding = create_dense_embeddings(
|
@@ -148,8 +166,9 @@ context_group = []
|
|
148 |
if ticker_year_quarter_tuples_list != []:
|
149 |
for ticker, quarter, year in ticker_year_quarter_tuples_list:
|
150 |
if use_bm25 == True:
|
|
|
151 |
indices = get_indices_bm25(
|
152 |
-
data,
|
153 |
)
|
154 |
else:
|
155 |
indices = None
|
@@ -194,6 +213,12 @@ with col1:
|
|
194 |
label="Model Prompt", value=prompt, height=400
|
195 |
)
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if decoder_model == "GPT-3.5 Turbo":
|
198 |
with col2:
|
199 |
with st.form("gpt_form"):
|
@@ -224,9 +249,12 @@ if decoder_model == "GPT-3.5 Turbo":
|
|
224 |
|
225 |
if decoder_model == "Vicuna-7B":
|
226 |
with col2:
|
227 |
-
st.
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
230 |
st.subheader("Answer:")
|
231 |
regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
|
232 |
generated_text_list = re.split(regex_pattern_sentences, generated_text)
|
|
|
59 |
with st.sidebar:
|
60 |
st.subheader("Select Options:")
|
61 |
|
62 |
+
use_bm25 = st.checkbox("Use 2-Stage Retrieval (BM25)", value=True)
|
63 |
+
|
64 |
+
use_keyword_matching = st.checkbox(
|
65 |
+
"Use Exact Keyword Matching", value=False
|
66 |
+
)
|
67 |
+
|
68 |
num_results = int(
|
69 |
st.number_input("Number of Results to query", 1, 15, value=4)
|
70 |
)
|
|
|
80 |
)
|
81 |
)
|
82 |
|
|
|
83 |
num_candidates = int(
|
84 |
st.number_input(
|
85 |
"Number of Candidates to Generate:",
|
|
|
89 |
value=50,
|
90 |
)
|
91 |
)
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
col1, col2 = st.columns([3, 3], gap="medium")
|
|
|
96 |
with col1:
|
97 |
query_text = st.text_area(
|
98 |
"Input Query",
|
99 |
+
value="How has the growth been for AMD in the PC market in Q1 and Q2 2020?",
|
100 |
)
|
101 |
|
102 |
+
|
103 |
# Extracting Document Entities from Question
|
104 |
(
|
105 |
companies,
|
|
|
119 |
ticker_list, year_quarter_range_list
|
120 |
)
|
121 |
|
122 |
+
with col2:
|
123 |
+
if ticker_year_quarter_tuples_list != []:
|
124 |
+
st.markdown("**Companies mentioned in the question:**")
|
125 |
+
for i in ticker_list:
|
126 |
+
st.markdown("- " + i)
|
127 |
+
st.write("**Duration:**")
|
128 |
+
st.write(f"{start_quarter} {start_year} - {end_quarter} {end_year}")
|
129 |
+
|
130 |
|
131 |
# Extract keywords from query
|
132 |
all_keywords = extract_entities_keywords(query_text, vicuna_ner_2_model)
|
133 |
if all_keywords != []:
|
134 |
keywords = clean_keywords_all_combs(all_keywords)
|
135 |
+
store_keywords = keywords.copy()
|
136 |
+
else:
|
137 |
+
keywords = None
|
138 |
+
|
139 |
+
# Setting Keywords to None if use_keywords is False
|
140 |
+
|
141 |
+
|
142 |
+
if use_keyword_matching == True:
|
143 |
+
keywords = store_keywords
|
144 |
else:
|
145 |
keywords = None
|
146 |
|
|
|
155 |
pinecone_index_name = "week13-instructor-xl"
|
156 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
157 |
retriever_model = get_instructor_embedding_model_api()
|
158 |
+
instruction = "Represent the finance query for retrieving related documents:"
|
|
|
|
|
159 |
|
160 |
|
161 |
dense_query_embedding = create_dense_embeddings(
|
|
|
166 |
if ticker_year_quarter_tuples_list != []:
|
167 |
for ticker, quarter, year in ticker_year_quarter_tuples_list:
|
168 |
if use_bm25 == True:
|
169 |
+
# Setting Ticker, Quarter, Year=None to trigger global bm25
|
170 |
indices = get_indices_bm25(
|
171 |
+
data, query_text, None, None, None, num_candidates
|
172 |
)
|
173 |
else:
|
174 |
indices = None
|
|
|
213 |
label="Model Prompt", value=prompt, height=400
|
214 |
)
|
215 |
|
216 |
+
with st.sidebar:
|
217 |
+
decoder_model = st.selectbox(
|
218 |
+
"Select Text Generation Model", decoder_models_choice
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
if decoder_model == "GPT-3.5 Turbo":
|
223 |
with col2:
|
224 |
with st.form("gpt_form"):
|
|
|
249 |
|
250 |
if decoder_model == "Vicuna-7B":
|
251 |
with col2:
|
252 |
+
with st.spinner(
|
253 |
+
text="The Vicuna Model is running. The model takes approximately 10-15 mins to generate the text."
|
254 |
+
):
|
255 |
+
generated_text = vicuna_text_generate(
|
256 |
+
prompt, vicuna_text_gen_model
|
257 |
+
)
|
258 |
st.subheader("Answer:")
|
259 |
regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
|
260 |
generated_text_list = re.split(regex_pattern_sentences, generated_text)
|
utils/__pycache__/entity_extraction.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/entity_extraction.cpython-38.pyc and b/utils/__pycache__/entity_extraction.cpython-38.pyc differ
|
|
utils/__pycache__/models.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/models.cpython-38.pyc and b/utils/__pycache__/models.cpython-38.pyc differ
|
|
utils/__pycache__/retriever.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/retriever.cpython-38.pyc and b/utils/__pycache__/retriever.cpython-38.pyc differ
|
|
utils/__pycache__/transcript_retrieval.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/transcript_retrieval.cpython-38.pyc and b/utils/__pycache__/transcript_retrieval.cpython-38.pyc differ
|
|
utils/entity_extraction.py
CHANGED
@@ -35,8 +35,9 @@ def extract_entities_docs(query, model):
|
|
35 |
"""
|
36 |
prompt = generate_ner_docs_prompt(query)
|
37 |
string_of_dict = model.predict(prompt, api_name="/predict")
|
38 |
-
|
39 |
-
|
|
|
40 |
start_quarter, start_year = entities_dict["start-duration"]
|
41 |
end_quarter, end_year = entities_dict["end-duration"]
|
42 |
companies = entities_dict["companies"]
|
@@ -176,8 +177,9 @@ def extract_entities_keywords(query, model):
|
|
176 |
"""
|
177 |
prompt = generate_ner_keywords_prompt(query)
|
178 |
string_of_dict = model.predict(prompt, api_name="/predict")
|
179 |
-
|
180 |
-
|
|
|
181 |
keywords_list = entities_dict["entities"]
|
182 |
return keywords_list
|
183 |
|
|
|
35 |
"""
|
36 |
prompt = generate_ner_docs_prompt(query)
|
37 |
string_of_dict = model.predict(prompt, api_name="/predict")
|
38 |
+
print(string_of_dict)
|
39 |
+
string_of_dict = string_of_dict.strip()
|
40 |
+
entities_dict = literal_eval(f"""{string_of_dict}""")
|
41 |
start_quarter, start_year = entities_dict["start-duration"]
|
42 |
end_quarter, end_year = entities_dict["end-duration"]
|
43 |
companies = entities_dict["companies"]
|
|
|
177 |
"""
|
178 |
prompt = generate_ner_keywords_prompt(query)
|
179 |
string_of_dict = model.predict(prompt, api_name="/predict")
|
180 |
+
print(string_of_dict)
|
181 |
+
string_of_dict = string_of_dict.strip()
|
182 |
+
entities_dict = literal_eval(f"""{string_of_dict}""")
|
183 |
keywords_list = entities_dict["entities"]
|
184 |
return keywords_list
|
185 |
|
utils/retriever.py
CHANGED
@@ -55,6 +55,7 @@ def query_pinecone(
|
|
55 |
filter_dict = {
|
56 |
"QA_Flag": {"$eq": "Answer"},
|
57 |
}
|
|
|
58 |
if year is not None:
|
59 |
filter_dict["Year"] = int(year)
|
60 |
if quarter is not None:
|
@@ -66,6 +67,7 @@ def query_pinecone(
|
|
66 |
if indices is not None:
|
67 |
filter_dict["index"] = {"$in": indices}
|
68 |
|
|
|
69 |
xc = index.query(
|
70 |
vector=dense_vec,
|
71 |
top_k=top_k,
|
|
|
55 |
filter_dict = {
|
56 |
"QA_Flag": {"$eq": "Answer"},
|
57 |
}
|
58 |
+
|
59 |
if year is not None:
|
60 |
filter_dict["Year"] = int(year)
|
61 |
if quarter is not None:
|
|
|
67 |
if indices is not None:
|
68 |
filter_dict["index"] = {"$in": indices}
|
69 |
|
70 |
+
print(filter_dict)
|
71 |
xc = index.query(
|
72 |
vector=dense_vec,
|
73 |
top_k=top_k,
|
utils/transcript_retrieval.py
CHANGED
@@ -2,30 +2,19 @@
|
|
2 |
|
3 |
|
4 |
def retrieve_transcript(data, year, quarter, ticker):
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
row = (
|
16 |
-
data.loc[
|
17 |
-
(data.Year == int(year))
|
18 |
-
& (data.Quarter == quarter)
|
19 |
-
& (data.Ticker == ticker),
|
20 |
-
["File_Name"],
|
21 |
-
]
|
22 |
-
.drop_duplicates()
|
23 |
-
.iloc[0, 0]
|
24 |
-
)
|
25 |
# convert row to a string and join values with "-"
|
26 |
# row_str = "-".join(row.astype(str)) + ".txt"
|
27 |
open_file = open(
|
28 |
-
f"Transcripts/{ticker}/{
|
29 |
"r",
|
30 |
)
|
31 |
file_text = open_file.read()
|
|
|
2 |
|
3 |
|
4 |
def retrieve_transcript(data, year, quarter, ticker):
|
5 |
+
print(year, quarter, ticker)
|
6 |
+
row = data.loc[
|
7 |
+
(data.Year == int(year))
|
8 |
+
& (data.Quarter == quarter)
|
9 |
+
& (data.Ticker == ticker),
|
10 |
+
["File_Name"],
|
11 |
+
]
|
12 |
+
filename = row.iloc[0, 0]
|
13 |
+
print(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# convert row to a string and join values with "-"
|
15 |
# row_str = "-".join(row.astype(str)) + ".txt"
|
16 |
open_file = open(
|
17 |
+
f"Transcripts/{ticker}/{filename}",
|
18 |
"r",
|
19 |
)
|
20 |
file_text = open_file.read()
|