File size: 8,970 Bytes
c49f0b0
 
 
 
 
 
 
 
 
aeaab1d
c49f0b0
 
 
 
 
aeaab1d
 
c49f0b0
 
 
 
 
 
aeaab1d
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import re
from ast import literal_eval
from nltk.stem import PorterStemmer, WordNetLemmatizer

# Entity Extraction


def generate_ner_docs_prompt(query):
    prompt = """USER: Extract the company names and time duration mentioned in the question. The entities should be extracted in the following format: {"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}. Return {"companies": None, "start-duration": (None, None), "end-duration": (None, None)} if the entities are not found.

Examples:
What is Intel's update on the server chip roadmap and strategy for Q1 2019?
{"companies": ["Intel"], "start-duration": ("Q1", "2019"), "end-duration": ("Q1", "2019")}
What are the opportunities and challenges in the Indian market for Amazon in 2016?
{"companies": ["Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2016")}
What did analysts ask about the Cisco's Webex?
{"companies": ["Cisco"], "start-duration": (None, None), "end-duration": (None, None)}
What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q2 to Q3 2018?
{"companies": ["Intel", "AMD"], "start-duration": ("Q2", "2018"), "end-duration": ("Q3", "2018")}
How did Microsoft and Amazon perform in terms of reliability and scalability of cloud for the years 2016 and 2017?
{"companies": ["Microsoft", "Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2017")}"""
    input_prompt = f"""###Input: {query}
ASSISTANT:"""
    final_prompt = prompt + "\n\n" + input_prompt
    return final_prompt


def extract_entities_docs(query, model):
    """
    Takes input a string which contains a dictionary of entities of the format:
    {"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}
    """
    prompt = generate_ner_docs_prompt(query)
    string_of_dict = model.predict(prompt, api_name="/predict")

    entities_dict = literal_eval(string_of_dict)
    start_quarter, start_year = entities_dict["start-duration"]
    end_quarter, end_year = entities_dict["end-duration"]
    companies = entities_dict["companies"]
    print((companies, start_quarter, start_year, end_quarter, end_year))
    return companies, start_quarter, start_year, end_quarter, end_year


def year_quarter_range(start_quarter, start_year, end_quarter, end_year):
    """
    Creates a list of all (year, quarter) pairs that lie in the range including the start and end quarters.

    Example:
    year_quarter_range("Q2", "2020", "Q3", "2021")
    [('Q2', '2020'), ('Q3', '2020'), ('Q4', '2020'), ('Q1', '2021'), ('Q2', '2021'), ('Q3', '2021')]
    """
    if (
        start_quarter is None
        or start_year is None
        or end_quarter is None
        or end_year is None
    ):
        return []
    else:
        quarters = ["Q1", "Q2", "Q3", "Q4"]
        start_index = quarters.index(start_quarter)
        end_index = quarters.index(end_quarter)

        years = range(int(start_year), int(end_year) + 1)
        year_quarter_range_list = []

        for year in years:
            if year == int(start_year):
                start = start_index
            else:
                start = 0

            if year == int(end_year):
                end = end_index + 1
            else:
                end = len(quarters)

            for quarter_index in range(start, end):
                year_quarter_range_list.append(
                    (quarters[quarter_index], str(year))
                )

        return year_quarter_range_list


def clean_companies(company_list):
    """Returns list of Tickers from list of companies"""
    company_ticker_map = {
        "apple": "AAPL",
        "amd": "AMD",
        "amazon": "AMZN",
        "cisco": "CSCO",
        "google": "GOOGL",
        "microsoft": "MSFT",
        "nvidia": "NVDA",
        "asml": "ASML",
        "intel": "INTC",
        "micron": "MU",
    }

    tickers = [
        "AAPL",
        "CSCO",
        "MSFT",
        "ASML",
        "NVDA",
        "GOOGL",
        "MU",
        "INTC",
        "AMZN",
        "AMD",
        "aapl",
        "csco",
        "msft",
        "asml",
        "nvda",
        "googl",
        "mu",
        "intc",
        "amzn",
        "amd",
    ]

    ticker_list = []
    for company in company_list:
        if company.lower() in company_ticker_map.keys():
            ticker = company_ticker_map[company.lower()]
            ticker_list.append(ticker)
        elif company.lower() in tickers:
            ticker_list.append(company.upper())
    return ticker_list


def ticker_year_quarter_tuples_creator(ticker_list, year_quarter_range_list):
    ticker_year_quarter_tuples_list = []
    for ticker in ticker_list:
        if year_quarter_range_list == []:
            return []
        else:
            for quarter, year in year_quarter_range_list:
                ticker_year_quarter_tuples_list.append((ticker, quarter, year))
    return ticker_year_quarter_tuples_list


# Keyword Extraction


def generate_ner_keywords_prompt(query):
    prompt = """USER: Extract the entities which describe the key theme and topics being asked in the question. Extract the entities in the following format: {"entities":["keywords"]}.
Examples:
What is Intel's update on the server chip roadmap and strategy for Q1 2019?
{"entities":["server"]}
What are the opportunities and challenges in the Indian market for Amazon from Q1 to Q3 in 2016?
{"entities":["indian"]}
What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q1 2016?
{"entities":["PC","Gaming","Data Centers"]}
What was Google's and Microsoft's capex spend for the last 2 years?
{"entities":["capex"]}
What did analysts ask about the cloud during Microsoft's earnings call in Q1 2018?
{"entities":["cloud"]}
What was the growth in Apple services revenue for 2017 Q3?
{"entities":["services"]}"""
    input_prompt = f"""###Input: {query}
ASSISTANT:"""
    final_prompt = prompt + "\n" + input_prompt
    return final_prompt


def extract_entities_keywords(query, model):
    """
    Takes input a string which contains a dictionary of entities of the format:
    {"entities":["keywords"]}
    """
    prompt = generate_ner_keywords_prompt(query)
    string_of_dict = model.predict(prompt, api_name="/predict")

    entities_dict = literal_eval(string_of_dict)
    keywords_list = entities_dict["entities"]
    return keywords_list


def expand_list_of_lists(list_of_lists):
    """
    Expands a list of lists of strings to a list of strings.
    Args:
      list_of_lists: A list of lists of strings.
    Returns:
      A list of strings.
    """

    expanded_list = []
    for inner_list in list_of_lists:
        for string in inner_list:
            expanded_list.append(string)
    return expanded_list


def all_keywords_combs(list_of_cleaned_keywords):
    # Convert all strings to lowercase.
    lower_texts = [text.lower() for text in list_of_cleaned_keywords]

    # Stem the words in each string.
    stemmer = PorterStemmer()
    stem_texts = [stemmer.stem(text) for text in list_of_cleaned_keywords]

    # Lemmatize the words in each string.
    lemmatizer = WordNetLemmatizer()
    lemm_texts = [
        lemmatizer.lemmatize(text) for text in list_of_cleaned_keywords
    ]

    list_of_cleaned_keywords.extend(lower_texts)
    list_of_cleaned_keywords.extend(stem_texts)
    list_of_cleaned_keywords.extend(lemm_texts)

    list_of_cleaned_keywords = list(set(list_of_cleaned_keywords))

    return list_of_cleaned_keywords


def create_incorrect_entities_list():
    words_to_remove = [
        "q1",
        "q2",
        "q3",
        "q4",
        "2016",
        "2017",
        "2018",
        "2019",
        "2020",
        "apple",
        "amd",
        "amazon",
        "cisco",
        "google",
        "microsoft",
        "nvidia",
        "asml",
        "intel",
        "micron",
        "strategy",
        "roadmap",
        "impact",
        "opportunities",
        "challenges",
        "growth",
        "performance",
        "analysis",
        "segments",
        "comparative",
        "overlapping",
        "acquisition",
        "revenue",
    ]
    words_to_remove = all_keywords_combs(words_to_remove)
    return words_to_remove


def clean_keywords_all_combs(keywords_list):

    words_to_remove = create_incorrect_entities_list()

    texts = [text.split(" ") for text in keywords_list]
    texts = expand_list_of_lists(texts)

    # Convert all strings to lowercase.
    lower_texts = [text.lower() for text in texts]
    cleaned_keywords = [
        text for text in lower_texts if text not in words_to_remove
    ]
    all_cleaned_keywords = all_keywords_combs(cleaned_keywords)
    return all_cleaned_keywords