File size: 3,456 Bytes
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import re

import openai
import pandas as pd
import streamlit_scrollable_textbox as stx
import torch
from InstructorEmbedding import INSTRUCTOR
from gradio_client import Client
from transformers import (
    AutoModelForMaskedLM,
    AutoTokenizer,
)
from rank_bm25 import BM25Okapi, BM25L, BM25Plus
import numpy as np
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import re
import streamlit as st


@st.cache_resource
def get_data():
    data = pd.read_csv("earnings_calls_cleaned_metadata_keywords_indices.csv")
    return data


# Preprocessing for BM25


def tokenizer(
    string, reg="[a-zA-Z'-]+|[0-9]{1,}%|[0-9]{1,}\.[0-9]{1,}%|\d+\.\d+%}"
):
    regex = reg
    string = string.replace("-", " ")
    return " ".join(re.findall(regex, string))


def preprocess_text(text):
    # Convert to lowercase
    text = text.lower()
    # Tokenize the text
    tokens = word_tokenize(text)
    # Remove stop words
    stop_words = set(stopwords.words("english"))
    tokens = [token for token in tokens if token not in stop_words]
    # Stem the tokens
    porter_stemmer = PorterStemmer()
    tokens = [porter_stemmer.stem(token) for token in tokens]
    # Join the tokens back into a single string
    preprocessed_text = " ".join(tokens)
    preprocessed_text = tokenizer(preprocessed_text)

    return preprocessed_text


# Initialize models from HuggingFace


@st.cache_resource
def get_splade_sparse_embedding_model():
    model_sparse = "naver/splade-cocondenser-ensembledistil"
    # check device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    tokenizer = AutoTokenizer.from_pretrained(model_sparse)
    model_sparse = AutoModelForMaskedLM.from_pretrained(model_sparse)
    # move to gpu if available
    model_sparse.to(device)
    return model_sparse, tokenizer


@st.cache_resource
def get_instructor_embedding_model():
    model = INSTRUCTOR("hkunlp/instructor-xl")
    return model


@st.cache_resource
def get_instructor_embedding_model_api():
    client = Client("https://awinml-api-instructor-xl-2.hf.space/")
    return client


@st.cache_resource
def get_alpaca_model():
    client = Client("https://awinml-alpaca-cpp.hf.space")
    return client


@st.cache_resource
def get_vicuna_ner_1_model():
    client = Client("https://awinml-api-vicuna-openblas-ner-1.hf.space/")
    return client


@st.cache_resource
def get_vicuna_ner_2_model():
    client = Client("https://awinml-api-vicuna-openblas-ner-2.hf.space/")
    return client


@st.cache_resource
def get_vicuna_text_gen_model():
    client = Client("https://awinml-api-vicuna-openblas-4.hf.space/")
    return client


@st.cache_resource
def get_bm25_model(data):
    corpus = data.Text.tolist()
    corpus_clean = [preprocess_text(x) for x in corpus]
    tokenized_corpus = [doc.split(" ") for doc in corpus_clean]
    bm25 = BM25Plus(tokenized_corpus)
    return corpus, bm25


@st.cache_resource
def save_key(api_key):
    return api_key


# Text Generation


def vicuna_text_generate(prompt, model):
    generated_text = model.predict(prompt, api_name="/predict")
    return generated_text


def gpt_turbo_model(prompt):
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "user", "content": prompt},
        ],
        temperature=0.01,
        max_tokens=1024,
    )
    return response["choices"][0]["message"]["content"]