Spaces:
Sleeping
Sleeping
File size: 8,970 Bytes
c49f0b0 d1d28c6 c49f0b0 d1d28c6 c49f0b0 d1d28c6 c49f0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import re
from ast import literal_eval
from nltk.stem import PorterStemmer, WordNetLemmatizer
# Entity Extraction
def generate_ner_docs_prompt(query):
prompt = """USER: Extract the company names and time duration mentioned in the question. The entities should be extracted in the following format: {"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}. Return {"companies": None, "start-duration": (None, None), "end-duration": (None, None)} if the entities are not found.
Examples:
What is Intel's update on the server chip roadmap and strategy for Q1 2019?
{"companies": ["Intel"], "start-duration": ("Q1", "2019"), "end-duration": ("Q1", "2019")}
What are the opportunities and challenges in the Indian market for Amazon in 2016?
{"companies": ["Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2016")}
What did analysts ask about the Cisco's Webex?
{"companies": ["Cisco"], "start-duration": (None, None), "end-duration": (None, None)}
What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q2 to Q3 2018?
{"companies": ["Intel", "AMD"], "start-duration": ("Q2", "2018"), "end-duration": ("Q3", "2018")}
How did Microsoft and Amazon perform in terms of reliability and scalability of cloud for the years 2016 and 2017?
{"companies": ["Microsoft", "Amazon"], "start-duration": ("Q1", "2016"), "end-duration": ("Q4", "2017")}"""
input_prompt = f"""###Input: {query}
ASSISTANT:"""
final_prompt = prompt + "\n\n" + input_prompt
return final_prompt
def extract_entities_docs(query, model):
"""
Takes input a string which contains a dictionary of entities of the format:
{"companies": list of companies mentioned in the question,"start-duration": ("start-quarter", "start-year"), "end-duration": ("end-quarter", "end-year")}
"""
prompt = generate_ner_docs_prompt(query)
string_of_dict = model.predict(prompt, api_name="/predict")
entities_dict = literal_eval(string_of_dict)
start_quarter, start_year = entities_dict["start-duration"]
end_quarter, end_year = entities_dict["end-duration"]
companies = entities_dict["companies"]
print((companies, start_quarter, start_year, end_quarter, end_year))
return companies, start_quarter, start_year, end_quarter, end_year
def year_quarter_range(start_quarter, start_year, end_quarter, end_year):
"""
Creates a list of all (year, quarter) pairs that lie in the range including the start and end quarters.
Example:
year_quarter_range("Q2", "2020", "Q3", "2021")
[('Q2', '2020'), ('Q3', '2020'), ('Q4', '2020'), ('Q1', '2021'), ('Q2', '2021'), ('Q3', '2021')]
"""
if (
start_quarter is None
or start_year is None
or end_quarter is None
or end_year is None
):
return []
else:
quarters = ["Q1", "Q2", "Q3", "Q4"]
start_index = quarters.index(start_quarter)
end_index = quarters.index(end_quarter)
years = range(int(start_year), int(end_year) + 1)
year_quarter_range_list = []
for year in years:
if year == int(start_year):
start = start_index
else:
start = 0
if year == int(end_year):
end = end_index + 1
else:
end = len(quarters)
for quarter_index in range(start, end):
year_quarter_range_list.append(
(quarters[quarter_index], str(year))
)
return year_quarter_range_list
def clean_companies(company_list):
"""Returns list of Tickers from list of companies"""
company_ticker_map = {
"apple": "AAPL",
"amd": "AMD",
"amazon": "AMZN",
"cisco": "CSCO",
"google": "GOOGL",
"microsoft": "MSFT",
"nvidia": "NVDA",
"asml": "ASML",
"intel": "INTC",
"micron": "MU",
}
tickers = [
"AAPL",
"CSCO",
"MSFT",
"ASML",
"NVDA",
"GOOGL",
"MU",
"INTC",
"AMZN",
"AMD",
"aapl",
"csco",
"msft",
"asml",
"nvda",
"googl",
"mu",
"intc",
"amzn",
"amd",
]
ticker_list = []
for company in company_list:
if company.lower() in company_ticker_map.keys():
ticker = company_ticker_map[company.lower()]
ticker_list.append(ticker)
elif company.lower() in tickers:
ticker_list.append(company.upper())
return ticker_list
def ticker_year_quarter_tuples_creator(ticker_list, year_quarter_range_list):
ticker_year_quarter_tuples_list = []
for ticker in ticker_list:
if year_quarter_range_list == []:
return []
else:
for quarter, year in year_quarter_range_list:
ticker_year_quarter_tuples_list.append((ticker, quarter, year))
return ticker_year_quarter_tuples_list
# Keyword Extraction
def generate_ner_keywords_prompt(query):
prompt = """USER: Extract the entities which describe the key theme and topics being asked in the question. Extract the entities in the following format: {"entities":["keywords"]}.
Examples:
What is Intel's update on the server chip roadmap and strategy for Q1 2019?
{"entities":["server"]}
What are the opportunities and challenges in the Indian market for Amazon from Q1 to Q3 in 2016?
{"entities":["indian"]}
What is the comparative performance analysis between Intel and AMD in key overlapping segments such as PC, Gaming, and Data Centers in Q1 2016?
{"entities":["PC","Gaming","Data Centers"]}
What was Google's and Microsoft's capex spend for the last 2 years?
{"entities":["capex"]}
What did analysts ask about the cloud during Microsoft's earnings call in Q1 2018?
{"entities":["cloud"]}
What was the growth in Apple services revenue for 2017 Q3?
{"entities":["services"]}"""
input_prompt = f"""###Input: {query}
ASSISTANT:"""
final_prompt = prompt + "\n" + input_prompt
return final_prompt
def extract_entities_keywords(query, model):
"""
Takes input a string which contains a dictionary of entities of the format:
{"entities":["keywords"]}
"""
prompt = generate_ner_keywords_prompt(query)
string_of_dict = model.predict(prompt, api_name="/predict")
entities_dict = literal_eval(string_of_dict)
keywords_list = entities_dict["entities"]
return keywords_list
def expand_list_of_lists(list_of_lists):
"""
Expands a list of lists of strings to a list of strings.
Args:
list_of_lists: A list of lists of strings.
Returns:
A list of strings.
"""
expanded_list = []
for inner_list in list_of_lists:
for string in inner_list:
expanded_list.append(string)
return expanded_list
def all_keywords_combs(list_of_cleaned_keywords):
# Convert all strings to lowercase.
lower_texts = [text.lower() for text in list_of_cleaned_keywords]
# Stem the words in each string.
stemmer = PorterStemmer()
stem_texts = [stemmer.stem(text) for text in list_of_cleaned_keywords]
# Lemmatize the words in each string.
lemmatizer = WordNetLemmatizer()
lemm_texts = [
lemmatizer.lemmatize(text) for text in list_of_cleaned_keywords
]
list_of_cleaned_keywords.extend(lower_texts)
list_of_cleaned_keywords.extend(stem_texts)
list_of_cleaned_keywords.extend(lemm_texts)
list_of_cleaned_keywords = list(set(list_of_cleaned_keywords))
return list_of_cleaned_keywords
def create_incorrect_entities_list():
words_to_remove = [
"q1",
"q2",
"q3",
"q4",
"2016",
"2017",
"2018",
"2019",
"2020",
"apple",
"amd",
"amazon",
"cisco",
"google",
"microsoft",
"nvidia",
"asml",
"intel",
"micron",
"strategy",
"roadmap",
"impact",
"opportunities",
"challenges",
"growth",
"performance",
"analysis",
"segments",
"comparative",
"overlapping",
"acquisition",
"revenue",
]
words_to_remove = all_keywords_combs(words_to_remove)
return words_to_remove
def clean_keywords_all_combs(keywords_list):
words_to_remove = create_incorrect_entities_list()
texts = [text.split(" ") for text in keywords_list]
texts = expand_list_of_lists(texts)
# Convert all strings to lowercase.
lower_texts = [text.lower() for text in texts]
cleaned_keywords = [
text for text in lower_texts if text not in words_to_remove
]
all_cleaned_keywords = all_keywords_combs(cleaned_keywords)
return all_cleaned_keywords
|