Spaces:
Sleeping
Sleeping
File size: 8,356 Bytes
c49f0b0 c88b2dc c49f0b0 ce5d7aa c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 c88b2dc c49f0b0 ce5d7aa c49f0b0 c88b2dc c49f0b0 aeaab1d c49f0b0 ce5d7aa c49f0b0 aeaab1d 1b539f2 aeaab1d c49f0b0 c88b2dc aeaab1d c49f0b0 5fea105 c49f0b0 dbcbca3 c49f0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import re
import numpy as np
import openai
import streamlit_scrollable_textbox as stx
import pinecone
import streamlit as st
st.set_page_config(layout="wide") # isort: split
from utils import nltkmodules
from utils.entity_extraction import (
extract_entities_docs,
year_quarter_range,
clean_companies,
ticker_year_quarter_tuples_creator,
extract_entities_keywords,
clean_keywords_all_combs,
)
from utils.models import (
get_alpaca_model,
get_vicuna_ner_1_model,
get_vicuna_ner_2_model,
get_vicuna_text_gen_model,
get_data,
get_instructor_embedding_model_api,
gpt_turbo_model,
vicuna_text_generate,
save_key,
)
from utils.prompts import (
generate_prompt_alpaca_style,
generate_multi_doc_context,
)
from utils.retriever import (
query_pinecone,
sentence_id_combine,
get_indices_bm25,
)
from utils.transcript_retrieval import retrieve_transcript
from utils.vector_index import create_dense_embeddings
st.title("Question Answering on Earnings Call Transcripts")
st.write(
"The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020."
)
# Caching Resources and Model APIs
data = get_data()
alpaca_model = get_alpaca_model()
vicuna_ner_1_model = get_vicuna_ner_1_model()
vicuna_ner_2_model = get_vicuna_ner_2_model()
vicuna_text_gen_model = get_vicuna_text_gen_model()
# Sidebar Options
decoder_models_choice = ["GPT-3.5 Turbo", "Vicuna-7B"]
with st.sidebar:
st.subheader("Select Options:")
use_bm25 = st.checkbox("Use 2-Stage Retrieval (BM25)", value=True)
use_keyword_matching = st.checkbox(
"Use Exact Keyword Matching", value=False
)
num_results = int(
st.number_input("Number of Results to query", 1, 15, value=4)
)
window = int(st.number_input("Sentence Window Size", 0, 10, value=1))
threshold = float(
st.number_input(
label="Similarity Score Threshold",
step=0.05,
format="%.2f",
value=0.6,
)
)
num_candidates = int(
st.number_input(
"Number of Candidates to Generate:",
25,
200,
step=25,
value=50,
)
)
col1, col2 = st.columns([3, 3], gap="medium")
with col1:
query_text = st.text_area(
"Input Query",
value="How has the growth been for AMD in the PC market in Q1 and Q2 2020?",
)
# Extracting Document Entities from Question
(
companies,
start_quarter,
start_year,
end_quarter,
end_year,
) = extract_entities_docs(query_text, vicuna_ner_1_model)
year_quarter_range_list = year_quarter_range(
start_quarter, start_year, end_quarter, end_year
)
ticker_list = clean_companies(companies)
ticker_year_quarter_tuples_list = ticker_year_quarter_tuples_creator(
ticker_list, year_quarter_range_list
)
with col2:
if ticker_year_quarter_tuples_list != []:
st.markdown("**Companies mentioned in the question:**")
for i in ticker_list:
st.markdown("- " + i)
st.write("**Duration:**")
st.write(f"{start_quarter} {start_year} - {end_quarter} {end_year}")
# Extract keywords from query
all_keywords = extract_entities_keywords(query_text, vicuna_ner_2_model)
if all_keywords != []:
keywords = clean_keywords_all_combs(all_keywords)
store_keywords = keywords.copy()
else:
keywords = None
# Setting Keywords to None if use_keywords is False
if use_keyword_matching == True:
keywords = store_keywords
else:
keywords = None
# Connect to PineCone Vector Database - Instructor Model
pinecone.init(
api_key=st.secrets["pinecone_instructor"],
environment="us-west4-gcp-free",
)
pinecone_index_name = "week13-instructor-xl"
pinecone_index = pinecone.Index(pinecone_index_name)
retriever_model = get_instructor_embedding_model_api()
instruction = "Represent the finance query for retrieving related documents:"
dense_query_embedding = create_dense_embeddings(
query_text, retriever_model, instruction
)
context_group = []
if ticker_year_quarter_tuples_list != []:
for ticker, quarter, year in ticker_year_quarter_tuples_list:
if use_bm25 == True:
# Setting Ticker, Quarter, Year=None to trigger global bm25
indices = get_indices_bm25(
data, query_text, None, None, None, num_candidates
)
else:
indices = None
query_results = query_pinecone(
dense_query_embedding,
num_results,
pinecone_index,
year,
quarter,
ticker,
keywords,
indices,
threshold,
)
context = sentence_id_combine(data, query_results, lag=window)
context_group.append((context, year, quarter, ticker))
multi_doc_context = generate_multi_doc_context(context_group)
else:
indices = None
query_results = query_pinecone(
dense_query_embedding,
num_results,
pinecone_index,
None,
None,
None,
keywords,
indices,
threshold,
)
multi_doc_context = sentence_id_combine(data, query_results, lag=window)
prompt = generate_prompt_alpaca_style(query_text, multi_doc_context)
with col1:
edited_prompt = st.text_area(
label="Model Prompt", value=prompt, height=400
)
with st.sidebar:
decoder_model = st.selectbox(
"Select Text Generation Model", decoder_models_choice
)
if decoder_model == "GPT-3.5 Turbo":
with col2:
with st.form("gpt_form"):
openai_key = st.text_input(
"Enter OpenAI key",
value="",
type="password",
)
gpt_submitted = st.form_submit_button("Submit")
if gpt_submitted:
api_key = save_key(openai_key)
openai.api_key = api_key
generated_text = gpt_turbo_model(edited_prompt)
st.subheader("Answer:")
regex_pattern_sentences = (
"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
)
generated_text_list = re.split(
regex_pattern_sentences, generated_text
)
for answer_text in generated_text_list:
answer_text = f"""{answer_text}"""
st.write(
f"<ul><li><p>{answer_text}</p></li></ul>",
unsafe_allow_html=True,
)
if decoder_model == "Vicuna-7B":
with col2:
with st.spinner(
text="The Vicuna Model is running. The model takes approximately 10-15 mins to generate the text."
):
generated_text = vicuna_text_generate(
prompt, vicuna_text_gen_model
)
st.subheader("Answer:")
regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
generated_text_list = re.split(regex_pattern_sentences, generated_text)
for answer_text in generated_text_list:
answer_text = f"""{answer_text}"""
st.write(
f"<ul><li><p>{answer_text}</p></li></ul>",
unsafe_allow_html=True,
)
tab1, tab2 = st.tabs(["Retrieved Text", "Retrieved Documents"])
with tab1:
with st.expander("See Retrieved Text"):
st.subheader("Retrieved Text:")
st.write(
f"<p>{multi_doc_context}</p>",
unsafe_allow_html=True,
)
with tab2:
if ticker_year_quarter_tuples_list != []:
for ticker, quarter, year in ticker_year_quarter_tuples_list:
file_text = retrieve_transcript(data, year, quarter, ticker)
with st.expander(f"See Transcript - {quarter} {year}"):
st.subheader(f"Earnings Call Transcript - {quarter} {year}:")
stx.scrollableTextbox(
file_text,
height=700,
border=False,
fontFamily="Helvetica",
)
else:
st.write(
"No specific document/documents found. Please mention Ticker and Duration in the Question."
)
|