import pandas as pd from tqdm import tqdm import pinecone import torch from sentence_transformers import SentenceTransformer from transformers import ( pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, ) import streamlit as st import openai @st.experimental_singleton def get_data(): data = pd.read_csv("earnings_calls_sentencewise.csv") return data # Initialize models from HuggingFace @st.experimental_singleton def get_t5_model(): return pipeline("summarization", model="t5-small", tokenizer="t5-small") @st.experimental_singleton def get_flan_t5_model(): return pipeline( "summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small" ) @st.experimental_singleton def get_mpnet_embedding_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer( "sentence-transformers/all-mpnet-base-v2", device=device ) model.max_seq_length = 512 return model @st.experimental_singleton def get_sgpt_embedding_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer( "Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device ) model.max_seq_length = 512 return model @st.experimental_memo def save_key(api_key): return api_key def query_pinecone(query, top_k, model, index, threshold=0.5): # generate embeddings for the query xq = model.encode([query]).tolist() # search pinecone index for context passage with the answer xc = index.query(xq, top_k=top_k, include_metadata=True) # filter the context passages based on the score threshold filtered_matches = [] for match in xc["matches"]: if match["score"] >= threshold: filtered_matches.append(match) xc["matches"] = filtered_matches return xc def format_query(query_results): # extract passage_text from Pinecone search result context = [result["metadata"]["Text"] for result in query_results["matches"]] return context def sentence_id_combine(data, query_results, lag=2): # Extract sentence IDs from query results ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]] # Generate new IDs by adding a lag value to the original IDs new_ids = [id + i for id in ids for i in range(-lag, lag + 1)] # Remove duplicates and sort the new IDs new_ids = sorted(set(new_ids)) # Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1 lookup_ids = [ new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1) ] # Create a list of context sentences by joining the sentences corresponding to the lookup IDs context_list = [ ". ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids ] return context_list def text_lookup(data, sentence_ids): context = ". ".join(data.iloc[sentence_ids].to_list()) return context def gpt3_summary(text): response = openai.Completion.create( model="text-davinci-003", prompt=text + "\n\nTl;dr", temperature=0.1, max_tokens=512, top_p=1.0, frequency_penalty=0.0, presence_penalty=1, ) return response.choices[0].text def gpt3_qa(query, answer): response = openai.Completion.create( model="text-davinci-003", prompt="Q: " + query + "\nA: " + answer, temperature=0, max_tokens=512, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, stop=["\n"], ) return response.choices[0].text st.title("Abstractive Question Answering") st.write("The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020.") query_text = st.text_input("Input Query", value="Who is the CEO of Apple?") num_results = int(st.number_input("Number of Results to query", 1, 5, value=3)) # Choose encoder model encoder_models_choice = ["SGPT", "MPNET"] encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice) # Choose decoder model decoder_models_choice = ["GPT3 (QA_davinci)", "GPT3 (summary_davinci)", "T5", "FLAN-T5"] decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice) if encoder_model == "MPNET": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp" ) pinecone_index_name = "week2-all-mpnet-base" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_mpnet_embedding_model() elif encoder_model == "SGPT": # Connect to pinecone environment pinecone.init( api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp" ) pinecone_index_name = "week2-sgpt-125m" pinecone_index = pinecone.Index(pinecone_index_name) retriever_model = get_sgpt_embedding_model() window = int(st.number_input("Sentence Window Size", 0, 3, value=0)) threshold = float( st.number_input( label="Similarity Score Threshold", step=0.05, format="%.2f", value=0.55 ) ) data = get_data() query_results = query_pinecone( query_text, num_results, retriever_model, pinecone_index, threshold ) if threshold <= 0.60: context_list = sentence_id_combine(data, query_results, lag=window) else: context_list = format_query(query_results) st.subheader("Answer:") if decoder_model == "GPT3 (summary_davinci)": openai_key = st.text_input( "Enter OpenAI key", value=st.secrets["openai_key"], type="password", ) api_key = save_key(openai_key) openai.api_key = api_key output_text = [] for context_text in context_list: output_text.append(gpt3_summary(context_text)) generated_text = ". ".join(output_text) st.write(gpt3_summary(generated_text)) elif decoder_model == "GPT3 (QA_davinci)": openai_key = st.text_input( "Enter OpenAI key", value=st.secrets["openai_key"], type="password", ) api_key = save_key(openai_key) openai.api_key = api_key output_text = [] for context_text in context_list: output_text.append(gpt3_qa(query_text, context_text)) generated_text = ". ".join(output_text) st.write(gpt3_qa(query_text, generated_text)) elif decoder_model == "T5": t5_pipeline = get_t5_model() output_text = [] for context_text in context_list: output_text.append(t5_pipeline(context_text)[0]["summary_text"]) generated_text = ". ".join(output_text) st.write(t5_pipeline(generated_text)[0]["summary_text"]) elif decoder_model == "FLAN-T5": flan_t5_pipeline = get_flan_t5_model() output_text = [] for context_text in context_list: output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"]) generated_text = ". ".join(output_text) st.write(flan_t5_pipeline(generated_text)[0]["summary_text"]) show_retrieved_text = st.checkbox("Show Retrieved Text", value=False) if show_retrieved_text: st.subheader("Retrieved Text:") for context_text in context_list: st.markdown(f"- {context_text}")