import json import re import openai import pandas as pd import requests import spacy import spacy_transformers import streamlit_scrollable_textbox as stx import torch from InstructorEmbedding import INSTRUCTOR from sentence_transformers import SentenceTransformer from gradio_client import Client from tqdm import tqdm from transformers import ( AutoModelForMaskedLM, AutoModelForSeq2SeqLM, AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer, pipeline, ) from rank_bm25 import BM25Okapi, BM25L, BM25Plus import numpy as np from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import re import streamlit as st @st.cache_resource def get_data(): data = pd.read_csv("earnings_calls_cleaned_metadata.csv") return data # Preprocessing for BM25 def tokenizer( string, reg="[a-zA-Z'-]+|[0-9]{1,}%|[0-9]{1,}\.[0-9]{1,}%|\d+\.\d+%}" ): regex = reg string = string.replace("-", " ") return " ".join(re.findall(regex, string)) def preprocess_text(text): # Convert to lowercase text = text.lower() # Tokenize the text tokens = word_tokenize(text) # Remove stop words stop_words = set(stopwords.words("english")) tokens = [token for token in tokens if token not in stop_words] # Stem the tokens porter_stemmer = PorterStemmer() tokens = [porter_stemmer.stem(token) for token in tokens] # Join the tokens back into a single string preprocessed_text = " ".join(tokens) preprocessed_text = tokenizer(preprocessed_text) return preprocessed_text # Initialize Spacy Model @st.cache_resource def get_spacy_model(): return spacy.load("en_core_web_trf") @st.cache_resource def get_flan_alpaca_xl_model(): model = AutoModelForSeq2SeqLM.from_pretrained( "/home/user/app/models/flan-alpaca-xl/" ) tokenizer = AutoTokenizer.from_pretrained( "/home/user/app/models/flan-alpaca-xl/" ) return model, tokenizer # Initialize models from HuggingFace @st.cache_resource def get_t5_model(): return pipeline("summarization", model="t5-small", tokenizer="t5-small") @st.cache_resource def get_flan_t5_model(): tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large") return model, tokenizer @st.cache_resource def get_mpnet_embedding_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer( "sentence-transformers/all-mpnet-base-v2", device=device ) model.max_seq_length = 512 return model @st.cache_resource def get_splade_sparse_embedding_model(): model_sparse = "naver/splade-cocondenser-ensembledistil" # check device device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_sparse) model_sparse = AutoModelForMaskedLM.from_pretrained(model_sparse) # move to gpu if available model_sparse.to(device) return model_sparse, tokenizer @st.cache_resource def get_sgpt_embedding_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer( "Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device ) model.max_seq_length = 512 return model @st.cache_resource def get_instructor_embedding_model(): device = "cuda" if torch.cuda.is_available() else "cpu" model = INSTRUCTOR("hkunlp/instructor-xl") return model @st.cache_resource def get_instructor_embedding_model_api(): client = Client("https://awinml-api-instructor-xl-2.hf.space/") return client @st.cache_resource def get_alpaca_model(): client = Client("https://awinml-alpaca-cpp.hf.space") return client @st.cache_resource def get_bm25_model(data): corpus = data.Text.tolist() corpus_clean = [preprocess_text(x) for x in corpus] tokenized_corpus = [doc.split(" ") for doc in corpus_clean] bm25 = BM25Plus(tokenized_corpus) return corpus, bm25 @st.cache_resource def save_key(api_key): return api_key # Text Generation def gpt_turbo_model(prompt): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": prompt}, ], temperature=0.01, max_tokens=1024, ) return response["choices"][0]["message"]["content"] def generate_text_flan_t5(model, tokenizer, input_text): input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, temperature=0.5, max_length=512) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Entity Extraction def generate_entities_flan_alpaca_inference_api(prompt): API_URL = "https://api-inference.huggingface.co/models/declare-lab/flan-alpaca-xl" API_TOKEN = st.secrets["hg_key"] headers = {"Authorization": f"Bearer {API_TOKEN}"} payload = { "inputs": prompt, "parameters": { "do_sample": True, "temperature": 0.1, "max_length": 80, }, "options": {"use_cache": False, "wait_for_model": True}, } try: data = json.dumps(payload) # Key not used as headers=headers not passed response = requests.request("POST", API_URL, data=data) output = json.loads(response.content.decode("utf-8"))[0][ "generated_text" ] except: output = "" print(output) return output def generate_entities_flan_alpaca_checkpoint(model, tokenizer, prompt): model_inputs = tokenizer(prompt, return_tensors="pt") input_ids = model_inputs["input_ids"] generation_output = model.generate( input_ids=input_ids, temperature=0.1, top_p=0.5, max_new_tokens=1024, ) output = tokenizer.decode(generation_output[0], skip_special_tokens=True) return output