File size: 4,878 Bytes
8cd1f1e
 
9975133
 
 
f9da573
8cd1f1e
f9da573
 
 
 
 
 
a64e1a1
f9da573
8cd1f1e
f9da573
 
 
 
 
 
9975133
 
f9da573
8cd1f1e
 
a7b0635
 
9975133
b19bb41
 
 
8cd1f1e
9975133
 
 
 
637ca1b
 
 
 
8cd1f1e
9975133
 
c5f41e6
9975133
 
c5f41e6
9975133
 
c5f41e6
 
 
 
 
 
 
 
 
 
 
 
 
 
9975133
 
c5f41e6
9975133
 
 
 
 
8cd1f1e
 
 
 
8d46199
9975133
 
8cd1f1e
 
 
 
9975133
 
 
 
 
8cd1f1e
9975133
 
8cd1f1e
 
 
 
b19bb41
8cd1f1e
 
 
 
 
 
b19bb41
8cd1f1e
 
 
 
 
9975133
 
fbd690d
9975133
 
 
637ca1b
9975133
e514fa8
 
fbd690d
 
e514fa8
c5f41e6
 
 
 
 
 
 
 
e514fa8
 
872808d
e514fa8
 
 
8cd1f1e
 
9975133
8cd1f1e
2a99161
9975133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd1f1e
 
 
 
 
 
40eb760
9975133
 
 
8cd1f1e
 
 
 
 
 
40eb760
9975133
 
 
8cd1f1e
9975133
 
 
 
f9da573
 
 
9975133
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import pinecone
import streamlit as st

st.set_page_config(layout="wide")

import streamlit_scrollable_textbox as stx
import openai
from utils import (
    get_data,
    get_mpnet_embedding_model,
    get_sgpt_embedding_model,
    get_flan_t5_model,
    get_t5_model,
    save_key,
)

from utils import (
    retrieve_transcript,
    query_pinecone,
    format_query,
    sentence_id_combine,
    text_lookup,
    generate_prompt,
    gpt_model,
)


st.title("Abstractive Question Answering")


st.write(
    "The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020."
)

col1, col2 = st.columns([3, 3], gap="medium")

with col1:
    st.subheader("Question")
    query_text = st.text_input(
        "Input Query",
        value="What was discussed regarding Wearables revenue performance?",
    )

with col1:
    years_choice = ["2020", "2019", "2018", "2017", "2016"]

with col1:
    year = st.selectbox("Year", years_choice)

with col1:
    quarter = st.selectbox("Quarter", ["Q1", "Q2", "Q3", "Q4"])

ticker_choice = [
    "AAPL",
    "CSCO",
    "MSFT",
    "ASML",
    "NVDA",
    "GOOGL",
    "MU",
    "INTC",
    "AMZN",
    "AMD",
]

with col1:
    ticker = st.selectbox("Company", ticker_choice)

with st.sidebar:
    st.subheader("Select Options:")

with st.sidebar:
    num_results = int(st.number_input("Number of Results to query", 1, 5, value=5))


# Choose encoder model

encoder_models_choice = ["MPNET", "SGPT"]
with st.sidebar:
    encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)


# Choose decoder model

decoder_models_choice = [
    "GPT3 - (text-davinci-003)",
    "T5",
    "FLAN-T5",
]

with st.sidebar:
    decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)


if encoder_model == "MPNET":
    # Connect to pinecone environment
    pinecone.init(api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp")
    pinecone_index_name = "week2-all-mpnet-base"
    pinecone_index = pinecone.Index(pinecone_index_name)
    retriever_model = get_mpnet_embedding_model()

elif encoder_model == "SGPT":
    # Connect to pinecone environment
    pinecone.init(api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp")
    pinecone_index_name = "week2-sgpt-125m"
    pinecone_index = pinecone.Index(pinecone_index_name)
    retriever_model = get_sgpt_embedding_model()


with st.sidebar:
    window = int(st.number_input("Sentence Window Size", 0, 5, value=3))

with st.sidebar:
    threshold = float(
        st.number_input(
            label="Similarity Score Threshold", step=0.05, format="%.2f", value=0.25
        )
    )

data = get_data()

query_results = query_pinecone(
    query_text,
    num_results,
    retriever_model,
    pinecone_index,
    year,
    quarter,
    ticker,
    threshold,
)

if threshold <= 0.90:
    context_list = sentence_id_combine(data, query_results, lag=window)
else:
    context_list = format_query(query_results)


prompt = generate_prompt(query_text, context_list)

if decoder_model == "GPT3 - (text-davinci-003)":
    with col2:
        with st.form("my_form"):
            edited_prompt = st.text_area(label="Model Prompt", value=prompt, height=270)

            openai_key = st.text_input(
                "Enter OpenAI key",
                value="",
                type="password",
            )
            submitted = st.form_submit_button("Submit")
            if submitted:
                api_key = save_key(openai_key)
                openai.api_key = api_key
                generated_text = gpt_model(edited_prompt)
                with col2:
                    st.subheader("Answer:")
                    st.write(generated_text)

elif decoder_model == "T5":
    t5_pipeline = get_t5_model()
    output_text = []
    for context_text in context_list:
        output_text.append(t5_pipeline(context_text)[0]["summary_text"])
    generated_text = ". ".join(output_text)
    with col2:
        st.subheader("Answer:")
        st.write(t5_pipeline(generated_text)[0]["summary_text"])

elif decoder_model == "FLAN-T5":
    flan_t5_pipeline = get_flan_t5_model()
    output_text = []
    for context_text in context_list:
        output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
    generated_text = ". ".join(output_text)
    with col2:
        st.subheader("Answer:")
        st.write(flan_t5_pipeline(generated_text)[0]["summary_text"])

with col1:
    with st.expander("See Retrieved Text"):
        for context_text in context_list:
            st.markdown(f"- {context_text}")

file_text = retrieve_transcript(data, year, quarter, ticker)

with col1:
    with st.expander("See Transcript"):
        stx.scrollableTextbox(
            file_text, height=700, border=False, fontFamily="Helvetica"
        )