awacke1's picture
Update app.py
a06050e
raw
history blame
3.68 kB
import streamlit as st
import openai
import os
import base64
import glob
import json
import re
from xml.etree import ElementTree as ET
from datetime import datetime
from dotenv import load_dotenv
from openai import ChatCompletion
load_dotenv()
openai.api_key = os.getenv('OPENAI_KEY')
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
safe_date_time = datetime.now().strftime("%m_%d_%H_%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:50]
return f"{safe_date_time}_{safe_prompt}.htm"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def CompressXML_Old(xml_text):
words = xml_text.split()
english_words = [word for word in words if re.fullmatch(r'[A-Za-z ]*', word)]
compressed_text = ' '.join(english_words)
return compressed_text
def CompressXML(xml_text):
tree = ET.ElementTree(ET.fromstring(xml_text))
for elem in tree.iter():
if isinstance(elem.tag, ET.Comment):
elem.getparent().remove(elem)
return ET.tostring(tree.getroot(), encoding='unicode')
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xmlold" or file.type == "text/xmlold":
tree = ElementTree.parse(file)
root = tree.getroot()
return ElementTree.tostring(root, encoding='unicode')
elif file.type == "application/xml" or file.type == "text/xml":
tree = ElementTree.parse(file)
root = tree.getroot()
xml_text = ElementTree.tostring(root, encoding='unicode')
return CompressXML(xml_text)
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
st.title("Chat with AI")
prompts = ['']
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "htm", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
prompts.append(file_content)
if st.button('Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
htm_files = glob.glob("*.htm")
for file in htm_files:
st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True)
if st.sidebar.button(f"Delete {file}"):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()