Spaces:
Runtime error
Runtime error
File size: 5,348 Bytes
6e969ba acc0c63 a88d27d bf65701 5d39a3e 6e969ba 9103f91 5d39a3e 6e969ba 988a5cb 2e67686 809b6f3 988a5cb 2e67686 49e8bc7 2e67686 988a5cb 6e969ba aef72ef 5751846 6e969ba bf65701 10369ed 6e969ba 5d39a3e 6e969ba 9103f91 11b82b8 6e969ba 11b82b8 5d39a3e 49e8bc7 9103f91 d3f3e34 34128f5 f8850ff a88d27d f8850ff a06050e 9103f91 ba84adc 34128f5 a88d27d f8850ff 5751846 f8850ff a88d27d f8850ff 34128f5 f8850ff 55c04e3 f8850ff 5751846 f8850ff 55c04e3 5751846 49e8bc7 55c04e3 387d633 6e969ba 0979664 49e8bc7 f3a97a2 9103f91 6e969ba 9103f91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(
page_title="GPT Streamlit Document Reasoner",
layout="wide")
st.title("GPT Chat with Optional File Context - Talk to your data!")
# Output options sidebar menu
st.sidebar.title("Output Options")
menu = ["txt", "htm", "md"]
choice = st.sidebar.selectbox("Choose output file type to save results", menu)
choicePrefix = "Output and download file set to "
if choice == "txt":
st.sidebar.write(choicePrefix + "Text file.")
elif choice == "htm":
st.sidebar.write(choicePrefix + "HTML5.")
elif choice == "md":
st.sidebar.write(choicePrefix + "Markdown.")
# sidebar slider for file input length to include in inference blocks
max_length = st.sidebar.slider("Max document length", min_value=1000, max_value=32000, value=3000, step=1000)
# Truncate document
def truncate_document(document, length):
return document[:length]
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
#model = "gpt-4-32k" # 32k tokens between prompt and inference tokens
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I_%M_%p")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:30]
return f"{safe_date_time}_{safe_prompt}.txt"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link_old(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def get_table_download_link(file_path):
import os
import base64
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text, max_length):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")[:max_length]
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
#return ET.tostring(root, encoding='unicode')
return CompressXML(ET.tostring(root, encoding='unicode',max_length))
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
prompts = ['']
file_content = ""
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
prompts.append(file_content)
if st.button('π¬ Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if len(file_content) > 0:
st.markdown(f"**File Content Added:**\n{file_content}")
htm_files = glob.glob("*.txt")
for file in htm_files:
st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True)
if st.sidebar.button(f"π Delete {file}"):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main() |