Spaces:
Runtime error
Runtime error
File size: 2,846 Bytes
96f2e55 d4aeda9 90bf080 8ddc706 d4aeda9 96f2e55 d4aeda9 b6708b3 b68de8f 22dbfdd b68de8f d4aeda9 91dc03f 22dbfdd d4aeda9 96f2e55 2ac9c48 96f2e55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from gradio.mix import Parallel, Series
description = "BigGAN text-to-image demo."
title = "BigGAN ImageNet"
Gans=["biggan-deep-128", "biggan-deep-256", "biggan-deep-512"]
model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024", 'vqgan_openimages_f16_8192':'OpenImages 8912',"wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"}
import os
import torch
from PIL import Image
from torchvision import transforms
# === SEMI-WEAKLY SUPERVISED MODELSP RETRAINED WITH 940 HASHTAGGED PUBLIC CONTENT ===
model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnet18_swsl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnet50_swsl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext50_32x4d_swsl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x4d_swsl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x8d_swsl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x16d_swsl')
# ================= SEMI-SUPERVISED MODELS PRETRAINED WITH YFCC100M ==================
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnet18_ssl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnet50_ssl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext50_32x4d_ssl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x4d_ssl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x8d_ssl')
# model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models', 'resnext101_32x16d_ssl')
io1 = gr.Interface.load('huggingface/osanseviero/BigGAN-deep-128')
io2 = gr.Interface.load('huggingface/osanseviero/BigGAN-deep-128')
#io3 = gr.Interface.load('vqgan_imagenet_f16_16384')
io3 = gr.Interface.load(model)
#io3 = gr.Interface.load("huggingface/emilyalsentzer/Bio_Discharge_Summary_BERT")
#io3 = gr.Interface.load("huggingface/google/pegasus-pubmed")
#io3 = gr.Interface.load("huggingface/tennessejoyce/titlewave-t5-base")
# = Parallel(io1, io2, io3,
interface = Parallel(io1,io2,io3,
description=description,
title = title,
examples=[
["lighthouse"],
["eyeglasses"],
["stool"],
["window"],
["hand"],
["dice"],
["cloud"],
["gate"],
["cat"],
["toes"]
]
)
interface.launch() |