Arabic-NLP / pages /preprocess.py
wissamantoun's picture
first commit
9c398de
raw
history blame
27.7 kB
import html
import logging
import re
from typing import List
from farasa.segmenter import FarasaSegmenter
import emoji
import pyarabic.araby as araby
ACCEPTED_MODELS = [
"bert-base-arabertv01",
"bert-base-arabert",
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-large-arabertv02",
"bert-large-arabertv2",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
SEGMENTED_MODELS = [
"bert-base-arabert",
"bert-base-arabertv2",
"bert-large-arabertv2",
]
SECOND_GEN_MODELS = [
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-large-arabertv02",
"bert-large-arabertv2",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
farasa_segmenter = FarasaSegmenter(interactive=True)
class ArabertPreprocessor:
"""
A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.
It also can unprocess the text ouput of the generated text
Args:
model_name (:obj:`str`): model name from the HuggingFace Models page without
the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found.
Current accepted models are:
- "bert-base-arabertv01": No farasa segmentation.
- "bert-base-arabert": with farasa segmentation.
- "bert-base-arabertv02": No farasas egmentation.
- "bert-base-arabertv2": with farasa segmentation.
- "bert-large-arabertv02": No farasas egmentation.
- "bert-large-arabertv2": with farasa segmentation.
- "araelectra-base": No farasa segmentation.
- "araelectra-base-discriminator": No farasa segmentation.
- "araelectra-base-generator": No farasa segmentation.
- "aragpt2-base": No farasa segmentation.
- "aragpt2-medium": No farasa segmentation.
- "aragpt2-large": No farasa segmentation.
- "aragpt2-mega": No farasa segmentation.
keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing.
remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts,
should be set to False when preprocessing TyDi QA.
replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls
and mentions by special tokens.
strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA,
KASRA, SUKUN, SHADDA).
strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'.
insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits
or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace
between words and numbers or numbers and words.
remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with
2 of this character.
replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02,
AraELECTRA and AraGPT2.
Set to False to force disable, and True to force enable. Replaces the "/" with "-",
since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary.
map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable.
Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995".
This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation),
and fixes the issue of caused by a bug when inserting white spaces.
apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable.
Returns:
ArabertPreprocessor: A preprocessor instance
Example:
from preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2")
arabert_prep.preprocess("SOME ARABIC TEXT")
"""
def __init__(
self,
model_name: str,
keep_emojis: bool = False,
remove_html_markup: bool = True,
replace_urls_emails_mentions: bool = True,
strip_tashkeel: bool = True,
strip_tatweel: bool = True,
insert_white_spaces: bool = True,
remove_non_digit_repetition: bool = True,
replace_slash_with_dash: bool = None,
map_hindi_numbers_to_arabic: bool = None,
apply_farasa_segmentation: bool = None,
):
model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "")
if model_name not in ACCEPTED_MODELS:
logging.warning(
"""Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor"""
)
self.model_name = "bert-base-arabertv02"
else:
self.model_name = model_name
if apply_farasa_segmentation is None:
if self.model_name in SEGMENTED_MODELS:
self.apply_farasa_segmentation = True
else:
self.apply_farasa_segmentation = False
else:
if (
apply_farasa_segmentation == False
and self.model_name in SEGMENTED_MODELS
):
logging.warning(
"The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!"
)
self.apply_farasa_segmentation = apply_farasa_segmentation
self.keep_emojis = keep_emojis
self.remove_html_markup = remove_html_markup
self.replace_urls_emails_mentions = replace_urls_emails_mentions
self.strip_tashkeel = strip_tashkeel
self.strip_tatweel = strip_tatweel
self.insert_white_spaces = insert_white_spaces
self.remove_non_digit_repetition = remove_non_digit_repetition
if replace_slash_with_dash is None:
if self.model_name in SECOND_GEN_MODELS:
self.replace_slash_with_dash = True
else:
self.replace_slash_with_dash = False
else:
self.replace_slash_with_dash = replace_slash_with_dash
if map_hindi_numbers_to_arabic is None:
if self.model_name in SECOND_GEN_MODELS:
self.map_hindi_numbers_to_arabic = True
else:
self.map_hindi_numbers_to_arabic = False
else:
self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic
def preprocess(self, text: str) -> str:
"""
Preprocess takes an input text line an applies the same preprocessing used in AraBERT
pretraining, or according to settings
Args:
text (:obj:`str`): inout text string
Returns:
string: A preprocessed string depending on which model was selected
"""
if (
self.model_name == "bert-base-arabert"
or self.model_name == "bert-base-arabertv01"
):
return self._preprocess_v1(
text,
do_farasa_tokenization=self.apply_farasa_segmentation,
)
if self.model_name in SECOND_GEN_MODELS:
return self._preprocess_v2(text)
return self._preprocess_v3(text)
def unpreprocess(self, text: str, desegment: bool = True) -> str:
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
The objective is to make the generated text of any model appear natural and not preprocessed.
Args:
text (:obj:`str`): input text to be un-preprocessed
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
Returns:
str: The unpreprocessed (and possibly Farasa-desegmented) text.
"""
if self.apply_farasa_segmentation and desegment:
text = self.desegment(text)
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
# https://stackoverflow.com/a/53436792/5381220
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
# during generation, sometimes the models don't put a space after the dot, this handles it
text = text.replace(".", " . ")
text = " ".join(text.split())
# handle decimals
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
text = re.sub(left_and_right_spaced_chars, r"\1", text)
text = re.sub(left_spaced_chars, r"\1", text)
text = re.sub(right_spaced_chars, r"\1", text)
return text
def desegment(self, text: str) -> str:
"""
Use this function if sentence tokenization was done using
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
and after before the '+' for suffixes
Example:
>>> desegment('ال+ دراس +ات')
الدراسات
"""
text = text.replace("+ ", "+")
text = text.replace(" +", "+")
text = " ".join([self._desegmentword(word) for word in text.split(" ")])
return text
def _desegmentword(self, orig_word: str) -> str:
"""
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
Example:
>>> _desegmentword("ال+يومي+ة")
اليومية
"""
word = orig_word.replace("ل+ال+", "لل")
if "ال+ال" not in orig_word:
word = word.replace("ل+ال", "لل")
word = word.replace("+", "")
word = word.replace("للل", "لل")
return word
def _preprocess_v3(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in email_regexes:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(user_mention_regex, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(hindi_to_arabic_map)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])",
r" \1 ",
text,
)
# re-fix brackets
text = text.replace("[ رابط ]", "[رابط]")
text = text.replace("[ بريد ]", "[بريد]")
text = text.replace("[ مستخدم ]", "[مستخدم]")
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)",
r" \1 \2 ",
text,
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)",
r" \1 \2 ",
text,
)
# remove unwanted characters
if self.keep_emojis:
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
rejected_chars_regex2 = "[^%s%s]" % (chars_regexv2, emoji_regex)
text = re.sub(rejected_chars_regex2, " ", text)
else:
text = re.sub(rejected_chars_regexv2, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if self.apply_farasa_segmentation:
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v2(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in email_regexes:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(user_mention_regex, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(hindi_to_arabic_map)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])",
r" \1 ",
text,
)
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text
)
if self.replace_slash_with_dash:
text = text.replace("/", "-")
# remove unwanted characters
if self.keep_emojis:
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex)
text = re.sub(rejected_chars_regex2, " ", text)
else:
text = re.sub(rejected_chars_regex, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if (
self.model_name == "bert-base-arabertv2"
or self.model_name == "bert-large-arabertv2"
):
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str:
"""
AraBERTv1 preprocessing Function
"""
text = str(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text)
text = re.sub("ـ", "", text)
text = re.sub("[«»]", ' " ', text)
if self.replace_urls_emails_mentions:
# replace the [رابط] token with space if you want to clean links
text = re.sub(regex_url_step1, "[رابط]", text)
text = re.sub(regex_url_step2, "[رابط]", text)
text = re.sub(regex_url, "[رابط]", text)
text = re.sub(regex_email, "[بريد]", text)
text = re.sub(regex_mention, "[مستخدم]", text)
text = re.sub("…", r"\.", text).strip()
text = self._remove_redundant_punct(text)
if self.replace_urls_emails_mentions:
text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text)
text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text)
text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text)
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])",
r" \1 ",
text,
)
if do_farasa_tokenization:
text = self._tokenize_arabic_words_farasa(text)
text = " ".join(text.split())
return text
def _farasa_segment(self, text: str) -> str:
line_farasa = text.split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
if "+" not in word:
segmented_line.append(word)
continue
segmented_word = self._split_farasa_output(word)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _split_farasa_output(self, word: str) -> str:
segmented_word = []
temp_token = ""
for i, c in enumerate(word):
if c == "+":
# if the token is KAF, it could be a suffix or prefix
if temp_token == "ك":
# if we are at the second token, then KAF is surely a prefix
if i == 1:
segmented_word.append(temp_token + "+")
temp_token = ""
# If the KAF token is between 2 tokens
elif word[i - 2] == "+":
# if the previous token is prefix, then this KAF must be a prefix
if segmented_word[-1][-1] == "+":
segmented_word.append(temp_token + "+")
temp_token = ""
# else it is a suffix, this KAF could not be a second suffix
else:
segmented_word.append("+" + temp_token)
temp_token = ""
# if Kaf is at the end, this is handled with the statement after the loop
elif temp_token in prefix_list:
segmented_word.append(temp_token + "+")
temp_token = ""
elif temp_token in suffix_list:
segmented_word.append("+" + temp_token)
temp_token = ""
else:
segmented_word.append(temp_token)
temp_token = ""
continue
temp_token += c
if temp_token != "":
if temp_token in suffix_list:
segmented_word.append("+" + temp_token)
else:
segmented_word.append(temp_token)
return segmented_word
def _tokenize_arabic_words_farasa(self, line_input: str) -> str:
if self.keep_emojis:
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
line_farasa = []
for word in line_input.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
line_farasa.append(word)
else:
line_farasa.append(farasa_segmenter.segment(word))
else:
line_farasa = farasa_segmenter.segment(line_input).split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
segmented_word = []
for token in word.split("+"):
if token in prefix_list:
segmented_word.append(token + "+")
elif token in suffix_list:
segmented_word.append("+" + token)
else:
segmented_word.append(token)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _remove_non_digit_repetition(self, text: str) -> str:
"""
:param text: the input text to remove elongation
:return: delongated text
"""
# loop over the number of times the regex matched the text
# OLD
# for index_ in range(len(re.findall(regex_tatweel, text))):
# elongation = re.search(regex_tatweel, text)
# if elongation:
# elongation_pattern = elongation.group()
# elongation_replacement = elongation_pattern[0]
# elongation_pattern = re.escape(elongation_pattern)
# text = re.sub(
# elongation_pattern, elongation_replacement, text, flags=re.MULTILINE
# )
# else:
# break
# New
text = multiple_char_pattern.sub(r"\1\1", text)
return text
def _remove_redundant_punct(self, text: str) -> str:
text_ = text
result = re.search(redundant_punct_pattern, text)
dif = 0
while result:
sub = result.group()
sub = sorted(set(sub), key=sub.index)
sub = " " + "".join(list(sub)) + " "
text = "".join(
(text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])
)
text_ = "".join(
(text_[: result.span()[0]], text_[result.span()[1] :])
).strip()
dif = abs(len(text) - len(text_))
result = re.search(redundant_punct_pattern, text_)
text = re.sub(r"\s+", " ", text)
return text.strip()
prefix_list = [
"ال",
"و",
"ف",
"ب",
"ك",
"ل",
"لل",
"\u0627\u0644",
"\u0648",
"\u0641",
"\u0628",
"\u0643",
"\u0644",
"\u0644\u0644",
"س",
]
suffix_list = [
"ه",
"ها",
"ك",
"ي",
"هما",
"كما",
"نا",
"كم",
"هم",
"هن",
"كن",
"ا",
"ان",
"ين",
"ون",
"وا",
"ات",
"ت",
"ن",
"ة",
"\u0647",
"\u0647\u0627",
"\u0643",
"\u064a",
"\u0647\u0645\u0627",
"\u0643\u0645\u0627",
"\u0646\u0627",
"\u0643\u0645",
"\u0647\u0645",
"\u0647\u0646",
"\u0643\u0646",
"\u0627",
"\u0627\u0646",
"\u064a\u0646",
"\u0648\u0646",
"\u0648\u0627",
"\u0627\u062a",
"\u062a",
"\u0646",
"\u0629",
]
other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"]
# the never_split list is ussed with the transformers library
prefix_symbols = [x + "+" for x in prefix_list]
suffix_symblos = ["+" + x for x in suffix_list]
never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))
url_regexes = [
r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)",
r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS",
r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+",
r"www[a-zA-Z0-9_\-?=%&/.~]+",
r"[a-zA-Z]+\.com",
r"(?=http)[^\s]+",
r"(?=www)[^\s]+",
r"://",
]
user_mention_regex = r"@[\w\d]+"
email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"]
redundant_punct_pattern = (
r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})"
)
regex_tatweel = r"(\D)\1{2,}"
multiple_char_pattern = re.compile(r"(\D)\1{2,}", re.DOTALL)
rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]"
rejected_chars_regexv2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]"
regex_url_step1 = r"(?=http)[^\s]+"
regex_url_step2 = r"(?=www)[^\s]+"
regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)"
regex_mention = r"@[\w\d]+"
regex_email = r"\S+@\S+"
chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘"
chars_regexv2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/"
white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"'
white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'"
white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`"
white_spaced_em_dash = r"\—\s+([^—]+)\s+\—"
left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])"
right_spaced_chars = r"([\[\(\{“«‘*\~]) "
left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
hindi_nums = "٠١٢٣٤٥٦٧٨٩"
arabic_nums = "0123456789"
hindi_to_arabic_map = str.maketrans(hindi_nums, arabic_nums)