Upload 41 files
Browse files
annotator/normalbae/__init__.py
CHANGED
@@ -28,7 +28,8 @@ class NormalBaeDetector:
|
|
28 |
args.importance_ratio = 0.7
|
29 |
model = NNET(args)
|
30 |
model = utils.load_checkpoint(modelpath, model)
|
31 |
-
model = model.cuda()
|
|
|
32 |
model.eval()
|
33 |
self.model = model
|
34 |
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
@@ -37,7 +38,8 @@ class NormalBaeDetector:
|
|
37 |
assert input_image.ndim == 3
|
38 |
image_normal = input_image
|
39 |
with torch.no_grad():
|
40 |
-
image_normal = torch.from_numpy(image_normal).float().cuda()
|
|
|
41 |
image_normal = image_normal / 255.0
|
42 |
image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
|
43 |
image_normal = self.norm(image_normal)
|
|
|
28 |
args.importance_ratio = 0.7
|
29 |
model = NNET(args)
|
30 |
model = utils.load_checkpoint(modelpath, model)
|
31 |
+
# model = model.cuda()
|
32 |
+
model = model.cpu()
|
33 |
model.eval()
|
34 |
self.model = model
|
35 |
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
38 |
assert input_image.ndim == 3
|
39 |
image_normal = input_image
|
40 |
with torch.no_grad():
|
41 |
+
# image_normal = torch.from_numpy(image_normal).float().cuda()
|
42 |
+
image_normal = torch.from_numpy(image_normal).float().cpu()
|
43 |
image_normal = image_normal / 255.0
|
44 |
image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
|
45 |
image_normal = self.norm(image_normal)
|
annotator/normalbae/models/submodules/efficientnet_repo/geffnet/helpers.py
CHANGED
@@ -14,6 +14,7 @@ def load_checkpoint(model, checkpoint_path):
|
|
14 |
if checkpoint_path and os.path.isfile(checkpoint_path):
|
15 |
print("=> Loading checkpoint '{}'".format(checkpoint_path))
|
16 |
checkpoint = torch.load(checkpoint_path)
|
|
|
17 |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
18 |
new_state_dict = OrderedDict()
|
19 |
for k, v in checkpoint['state_dict'].items():
|
|
|
14 |
if checkpoint_path and os.path.isfile(checkpoint_path):
|
15 |
print("=> Loading checkpoint '{}'".format(checkpoint_path))
|
16 |
checkpoint = torch.load(checkpoint_path)
|
17 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
18 |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
19 |
new_state_dict = OrderedDict()
|
20 |
for k, v in checkpoint['state_dict'].items():
|