Spaces:
Running
Running
Adding eda and rag as templates
Browse files- app.py +8 -6
- notebooks/eda.json +14 -14
- notebooks/finetuning.json +0 -6
- notebooks/rag.json +82 -1
- utils/notebook_utils.py +0 -457
app.py
CHANGED
@@ -32,6 +32,11 @@ client = Client(headers=HEADERS)
|
|
32 |
|
33 |
logging.basicConfig(level=logging.INFO)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def get_compatible_libraries(dataset: str):
|
37 |
try:
|
@@ -116,11 +121,6 @@ def _push_to_hub(
|
|
116 |
raise
|
117 |
|
118 |
|
119 |
-
folder_path = "notebooks"
|
120 |
-
notebook_templates = load_json_files_from_folder(folder_path)
|
121 |
-
logging.info(f"Available notebooks {notebook_templates.keys()}")
|
122 |
-
|
123 |
-
|
124 |
def generate_cells(dataset_id, notebook_title):
|
125 |
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
|
126 |
cells = notebook_templates[notebook_title]["notebook_template"]
|
@@ -248,7 +248,9 @@ with gr.Blocks(
|
|
248 |
gr.Markdown("## 2. Select the type of notebook you want to generate")
|
249 |
with gr.Row():
|
250 |
notebook_type = gr.Dropdown(
|
251 |
-
choices=notebook_templates.keys(),
|
|
|
|
|
252 |
)
|
253 |
generate_button = gr.Button("Generate Notebook", variant="primary")
|
254 |
contribute_btn = gr.Button(
|
|
|
32 |
|
33 |
logging.basicConfig(level=logging.INFO)
|
34 |
|
35 |
+
# TODO: Validate notebook templates format
|
36 |
+
folder_path = "notebooks"
|
37 |
+
notebook_templates = load_json_files_from_folder(folder_path)
|
38 |
+
logging.info(f"Available notebooks {notebook_templates.keys()}")
|
39 |
+
|
40 |
|
41 |
def get_compatible_libraries(dataset: str):
|
42 |
try:
|
|
|
121 |
raise
|
122 |
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
def generate_cells(dataset_id, notebook_title):
|
125 |
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
|
126 |
cells = notebook_templates[notebook_title]["notebook_template"]
|
|
|
248 |
gr.Markdown("## 2. Select the type of notebook you want to generate")
|
249 |
with gr.Row():
|
250 |
notebook_type = gr.Dropdown(
|
251 |
+
choices=notebook_templates.keys(),
|
252 |
+
label="Notebook type",
|
253 |
+
value="Text Embeddings",
|
254 |
)
|
255 |
generate_button = gr.Button("Generate Notebook", variant="primary")
|
256 |
contribute_btn = gr.Button(
|
notebooks/eda.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
"notebook_template": [
|
6 |
{
|
7 |
"cell_type": "markdown",
|
8 |
-
"source": "
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "markdown",
|
@@ -13,15 +13,15 @@
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
-
"source": "
|
17 |
},
|
18 |
{
|
19 |
"cell_type": "code",
|
20 |
-
"source": "
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"source": "
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "markdown",
|
@@ -29,28 +29,28 @@
|
|
29 |
},
|
30 |
{
|
31 |
"cell_type": "code",
|
32 |
-
"source": "
|
33 |
},
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
-
"source": "
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
-
"source": "
|
41 |
},
|
42 |
{
|
43 |
"cell_type": "code",
|
44 |
-
"source": "
|
45 |
},
|
46 |
{
|
47 |
"cell_type": "code",
|
48 |
-
"source": "
|
49 |
},
|
50 |
{
|
51 |
"type": "categoric",
|
52 |
"cell_type": "code",
|
53 |
-
"source": "
|
54 |
},
|
55 |
{
|
56 |
"cell_type": "markdown",
|
@@ -59,22 +59,22 @@
|
|
59 |
{
|
60 |
"type": "numeric",
|
61 |
"cell_type": "code",
|
62 |
-
"source": "
|
63 |
},
|
64 |
{
|
65 |
"type": "numeric",
|
66 |
"cell_type": "code",
|
67 |
-
"source": "
|
68 |
},
|
69 |
{
|
70 |
"type": "categoric",
|
71 |
"cell_type": "code",
|
72 |
-
"source": "
|
73 |
},
|
74 |
{
|
75 |
"type": "numeric",
|
76 |
"cell_type": "code",
|
77 |
-
"source": "
|
78 |
}
|
79 |
]
|
80 |
}
|
|
|
5 |
"notebook_template": [
|
6 |
{
|
7 |
"cell_type": "markdown",
|
8 |
+
"source": "---\n# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**\n---"
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "markdown",
|
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
+
"source": "# Install and import necessary libraries.\n!pip install pandas matplotlib seaborn"
|
17 |
},
|
18 |
{
|
19 |
"cell_type": "code",
|
20 |
+
"source": "import matplotlib.pyplot as plt\nimport seaborn as sns"
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"source": "# Load the dataset as a DataFrame\n{first_code}"
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "markdown",
|
|
|
29 |
},
|
30 |
{
|
31 |
"cell_type": "code",
|
32 |
+
"source": "# First rows of the dataset and info\nprint(df.head())\nprint(df.info())"
|
33 |
},
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
+
"source": "# Check for missing values\nprint(df.isnull().sum())"
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
+
"source": "# Identify data types of each column\nprint(df.dtypes)"
|
41 |
},
|
42 |
{
|
43 |
"cell_type": "code",
|
44 |
+
"source": "# Detect duplicated rows\nprint(df.duplicated().sum())"
|
45 |
},
|
46 |
{
|
47 |
"cell_type": "code",
|
48 |
+
"source": "# Generate descriptive statistics\nprint(df.describe())"
|
49 |
},
|
50 |
{
|
51 |
"type": "categoric",
|
52 |
"cell_type": "code",
|
53 |
+
"source": "# Unique values in categorical columns\ndf.select_dtypes(include=['object']).nunique()"
|
54 |
},
|
55 |
{
|
56 |
"cell_type": "markdown",
|
|
|
59 |
{
|
60 |
"type": "numeric",
|
61 |
"cell_type": "code",
|
62 |
+
"source": "# Correlation matrix for numerical columns\ncorr_matrix = df.corr(numeric_only=True)\nplt.figure(figsize=(10, 8))\nsns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)\nplt.title('Correlation Matrix')\nplt.show()"
|
63 |
},
|
64 |
{
|
65 |
"type": "numeric",
|
66 |
"cell_type": "code",
|
67 |
+
"source": "# Distribution plots for numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.histplot(df[column], kde=True)\n plt.title(f'Distribution of {column}')\n plt.xlabel(column)\n plt.ylabel('Frequency')\n plt.show()"
|
68 |
},
|
69 |
{
|
70 |
"type": "categoric",
|
71 |
"cell_type": "code",
|
72 |
+
"source": "# Count plots for categorical columns\nfor column in df.select_dtypes(include=['object']).columns:\n plt.figure(figsize=(8, 4))\n sns.countplot(x=column, data=df)\n plt.title(f'Count Plot of {column}')\n plt.xlabel(column)\n plt.ylabel('Count')\n plt.show()"
|
73 |
},
|
74 |
{
|
75 |
"type": "numeric",
|
76 |
"cell_type": "code",
|
77 |
+
"source": "# Box plots for detecting outliers in numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.boxplot(df[column])\n plt.title(f'Box Plot of {column}')\n plt.xlabel(column)\n plt.show()"
|
78 |
}
|
79 |
]
|
80 |
}
|
notebooks/finetuning.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"notebook_title": "Supervised fine-tuning (SFT)",
|
3 |
-
"notebook_type": "sft",
|
4 |
-
"dataset_type": "numeric",
|
5 |
-
"notebook_template": []
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/rag.json
CHANGED
@@ -2,5 +2,86 @@
|
|
2 |
"notebook_title": "Retrieval-augmented generation (RAG)",
|
3 |
"notebook_type": "rag",
|
4 |
"dataset_type": "text",
|
5 |
-
"notebook_template": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
}
|
|
|
2 |
"notebook_title": "Retrieval-augmented generation (RAG)",
|
3 |
"notebook_type": "rag",
|
4 |
"dataset_type": "text",
|
5 |
+
"notebook_template": [
|
6 |
+
{
|
7 |
+
"cell_type": "markdown",
|
8 |
+
"source": "---\n# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**\n---"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"source": "## 1. Setup necessary libraries and load the dataset"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"source": "# Install and import necessary libraries.\n!pip install pandas sentence-transformers faiss-cpu transformers torch huggingface_hub"
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"source": "from sentence_transformers import SentenceTransformer\nfrom transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\nfrom huggingface_hub import InferenceClient\nimport pandas as pd\nimport faiss\nimport torch"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"source": "# Load the dataset as a DataFrame\n{first_code}"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"source": "# Specify the column name that contains the text data to generate embeddings\ncolumn_to_generate_embeddings = '{longest_col}'"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "markdown",
|
32 |
+
"source": "## 2. Loading embedding model and creating FAISS index"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"source": "# Remove duplicate entries based on the specified column\ndf = df.drop_duplicates(subset=column_to_generate_embeddings)"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"source": "# Convert the column data to a list of text entries\ntext_list = df[column_to_generate_embeddings].tolist()"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"source": "# Specify the embedding model you want to use\nmodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"source": "vectors = model.encode(text_list)\nvector_dimension = vectors.shape[1]\n\n# Initialize the FAISS index with the appropriate dimension (384 for this model)\nindex = faiss.IndexFlatL2(vector_dimension)\n\n# Encode the text list into embeddings and add them to the FAISS index\nindex.add(vectors)"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "markdown",
|
52 |
+
"source": "## 3. Perform a text search"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"source": "# Specify the text you want to search for in the list\nquery = \"How to cook sushi?\"\n\n# Generate the embedding for the search query\nquery_embedding = model.encode([query])"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"source": "# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)\nD, I = index.search(query_embedding, k=10)\n\n# Print the similar documents found\nprint(f\"Similar documents: {[text_list[i] for i in I[0]]}\")"
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "markdown",
|
64 |
+
"source": "## 4. Load pipeline and perform inference locally"
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"source": "# Adjust model name as needed\ncheckpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\" # for GPU usage or \"cpu\" for CPU usage\n\ntokenizer = AutoTokenizer.from_pretrained(checkpoint)\nmodel = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)\n\ngenerator = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, device=0 if device == \"cuda\" else -1)"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"source": "# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query\nselected_elements = [text_list[i] for i in I[0].tolist()]\ncontext = ','.join(selected_elements)\nmessages = [\n {\n \"role\": \"system\",\n \"content\": f\"You are an intelligent assistant tasked with providing accurate and concise answers based on the following context. Use the information retrieved to construct your response. Context: {context}\",\n },\n {\"role\": \"user\", \"content\": query},\n]"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"source": "# Send the prompt to the pipeline and show the answer\noutput = generator(messages)\nprint(\"Generated result:\")\nprint(output[0]['generated_text'][-1]['content']) # Print the assistant's response content"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "markdown",
|
80 |
+
"source": "## 5. Alternatively call the inference client"
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"source": "# Adjust model name as needed\ncheckpoint = \"meta-llama/Meta-Llama-3-8B-Instruct\"\n\n# Change here your Hugging Face API token\ntoken = \"hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\" \n\ninference_client = InferenceClient(checkpoint, token=token)\noutput = inference_client.chat_completion(messages=messages, stream=False)\nprint(\"Generated result:\")\nprint(output.choices[0].message.content)"
|
85 |
+
}
|
86 |
+
]
|
87 |
}
|
utils/notebook_utils.py
CHANGED
@@ -24,463 +24,6 @@ def replace_wildcards(
|
|
24 |
return new_templates
|
25 |
|
26 |
|
27 |
-
embeddings_cells = [
|
28 |
-
{
|
29 |
-
"cell_type": "markdown",
|
30 |
-
"source": """
|
31 |
-
---
|
32 |
-
# **Embeddings Notebook for {dataset_name} dataset**
|
33 |
-
---
|
34 |
-
""",
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"cell_type": "markdown",
|
38 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "code",
|
42 |
-
"source": """
|
43 |
-
# Install and import necessary libraries.
|
44 |
-
!pip install pandas sentence-transformers faiss-cpu
|
45 |
-
""",
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"cell_type": "code",
|
49 |
-
"source": """
|
50 |
-
import pandas as pd
|
51 |
-
from sentence_transformers import SentenceTransformer
|
52 |
-
import faiss
|
53 |
-
""",
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"source": """
|
58 |
-
# Load the dataset as a DataFrame
|
59 |
-
{first_code}
|
60 |
-
""",
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"cell_type": "code",
|
64 |
-
"source": """
|
65 |
-
# Specify the column name that contains the text data to generate embeddings
|
66 |
-
column_to_generate_embeddings = '{longest_col}'
|
67 |
-
""",
|
68 |
-
},
|
69 |
-
{
|
70 |
-
"cell_type": "markdown",
|
71 |
-
"source": "## 2. Loading embedding model and creating FAISS index",
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"source": """
|
76 |
-
# Remove duplicate entries based on the specified column
|
77 |
-
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
78 |
-
""",
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "code",
|
82 |
-
"source": """
|
83 |
-
# Convert the column data to a list of text entries
|
84 |
-
text_list = df[column_to_generate_embeddings].tolist()
|
85 |
-
""",
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"cell_type": "code",
|
89 |
-
"source": """
|
90 |
-
# Specify the embedding model you want to use
|
91 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
92 |
-
""",
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"cell_type": "code",
|
96 |
-
"source": """
|
97 |
-
vectors = model.encode(text_list)
|
98 |
-
vector_dimension = vectors.shape[1]
|
99 |
-
|
100 |
-
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
101 |
-
index = faiss.IndexFlatL2(vector_dimension)
|
102 |
-
|
103 |
-
# Encode the text list into embeddings and add them to the FAISS index
|
104 |
-
index.add(vectors)
|
105 |
-
""",
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"cell_type": "markdown",
|
109 |
-
"source": "## 3. Perform a text search",
|
110 |
-
},
|
111 |
-
{
|
112 |
-
"cell_type": "code",
|
113 |
-
"source": """
|
114 |
-
# Specify the text you want to search for in the list
|
115 |
-
text_to_search = text_list[0]
|
116 |
-
print(f"Text to search: {text_to_search}")
|
117 |
-
""",
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"cell_type": "code",
|
121 |
-
"source": """
|
122 |
-
# Generate the embedding for the search query
|
123 |
-
query_embedding = model.encode([text_to_search])
|
124 |
-
""",
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"source": """
|
129 |
-
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
130 |
-
D, I = index.search(query_embedding, k=10)
|
131 |
-
|
132 |
-
# Print the similar documents found
|
133 |
-
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
134 |
-
""",
|
135 |
-
},
|
136 |
-
]
|
137 |
-
|
138 |
-
eda_cells = [
|
139 |
-
{
|
140 |
-
"cell_type": "markdown",
|
141 |
-
"source": """
|
142 |
-
---
|
143 |
-
# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**
|
144 |
-
---
|
145 |
-
""",
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "markdown",
|
149 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"cell_type": "code",
|
153 |
-
"source": """
|
154 |
-
# Install and import necessary libraries.
|
155 |
-
!pip install pandas matplotlib seaborn
|
156 |
-
""",
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"cell_type": "code",
|
160 |
-
"source": """
|
161 |
-
import pandas as pd
|
162 |
-
import matplotlib.pyplot as plt
|
163 |
-
import seaborn as sns
|
164 |
-
""",
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"cell_type": "code",
|
168 |
-
"source": """
|
169 |
-
# Load the dataset as a DataFrame
|
170 |
-
{first_code}
|
171 |
-
""",
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"cell_type": "markdown",
|
175 |
-
"source": "## 2. Understanding the Dataset",
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"cell_type": "code",
|
179 |
-
"source": """
|
180 |
-
# First rows of the dataset and info
|
181 |
-
print(df.head())
|
182 |
-
print(df.info())
|
183 |
-
""",
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"cell_type": "code",
|
187 |
-
"source": """
|
188 |
-
# Check for missing values
|
189 |
-
print(df.isnull().sum())
|
190 |
-
""",
|
191 |
-
},
|
192 |
-
{
|
193 |
-
"cell_type": "code",
|
194 |
-
"source": """
|
195 |
-
# Identify data types of each column
|
196 |
-
print(df.dtypes)
|
197 |
-
""",
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"cell_type": "code",
|
201 |
-
"source": """
|
202 |
-
# Detect duplicated rows
|
203 |
-
print(df.duplicated().sum())
|
204 |
-
""",
|
205 |
-
},
|
206 |
-
{
|
207 |
-
"cell_type": "code",
|
208 |
-
"source": """
|
209 |
-
# Generate descriptive statistics
|
210 |
-
print(df.describe())
|
211 |
-
""",
|
212 |
-
},
|
213 |
-
{
|
214 |
-
"type": "categoric",
|
215 |
-
"cell_type": "code",
|
216 |
-
"source": """
|
217 |
-
# Unique values in categorical columns
|
218 |
-
df.select_dtypes(include=['object']).nunique()
|
219 |
-
""",
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"cell_type": "markdown",
|
223 |
-
"source": "## 3. Data Visualization",
|
224 |
-
},
|
225 |
-
{
|
226 |
-
"type": "numeric",
|
227 |
-
"cell_type": "code",
|
228 |
-
"source": """
|
229 |
-
# Correlation matrix for numerical columns
|
230 |
-
corr_matrix = df.corr(numeric_only=True)
|
231 |
-
plt.figure(figsize=(10, 8))
|
232 |
-
sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
|
233 |
-
plt.title('Correlation Matrix')
|
234 |
-
plt.show()
|
235 |
-
""",
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"type": "numeric",
|
239 |
-
"cell_type": "code",
|
240 |
-
"source": """
|
241 |
-
# Distribution plots for numerical columns
|
242 |
-
for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
243 |
-
plt.figure(figsize=(8, 4))
|
244 |
-
sns.histplot(df[column], kde=True)
|
245 |
-
plt.title(f'Distribution of {column}')
|
246 |
-
plt.xlabel(column)
|
247 |
-
plt.ylabel('Frequency')
|
248 |
-
plt.show()
|
249 |
-
""",
|
250 |
-
},
|
251 |
-
{
|
252 |
-
"type": "categoric",
|
253 |
-
"cell_type": "code",
|
254 |
-
"source": """
|
255 |
-
# Count plots for categorical columns
|
256 |
-
for column in df.select_dtypes(include=['object']).columns:
|
257 |
-
plt.figure(figsize=(8, 4))
|
258 |
-
sns.countplot(x=column, data=df)
|
259 |
-
plt.title(f'Count Plot of {column}')
|
260 |
-
plt.xlabel(column)
|
261 |
-
plt.ylabel('Count')
|
262 |
-
plt.show()
|
263 |
-
""",
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"type": "numeric",
|
267 |
-
"cell_type": "code",
|
268 |
-
"source": """
|
269 |
-
# Box plots for detecting outliers in numerical columns
|
270 |
-
for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
271 |
-
plt.figure(figsize=(8, 4))
|
272 |
-
sns.boxplot(df[column])
|
273 |
-
plt.title(f'Box Plot of {column}')
|
274 |
-
plt.xlabel(column)
|
275 |
-
plt.show()
|
276 |
-
""",
|
277 |
-
},
|
278 |
-
]
|
279 |
-
|
280 |
-
|
281 |
-
rag_cells = [
|
282 |
-
{
|
283 |
-
"cell_type": "markdown",
|
284 |
-
"source": """
|
285 |
-
---
|
286 |
-
# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**
|
287 |
-
---
|
288 |
-
""",
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"cell_type": "markdown",
|
292 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
293 |
-
},
|
294 |
-
{
|
295 |
-
"cell_type": "code",
|
296 |
-
"source": """
|
297 |
-
# Install and import necessary libraries.
|
298 |
-
!pip install pandas sentence-transformers faiss-cpu transformers torch huggingface_hub
|
299 |
-
""",
|
300 |
-
},
|
301 |
-
{
|
302 |
-
"cell_type": "code",
|
303 |
-
"source": """
|
304 |
-
from sentence_transformers import SentenceTransformer
|
305 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
306 |
-
from huggingface_hub import InferenceClient
|
307 |
-
import pandas as pd
|
308 |
-
import faiss
|
309 |
-
import torch
|
310 |
-
""",
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"cell_type": "code",
|
314 |
-
"source": """
|
315 |
-
# Load the dataset as a DataFrame
|
316 |
-
{first_code}
|
317 |
-
""",
|
318 |
-
},
|
319 |
-
{
|
320 |
-
"cell_type": "code",
|
321 |
-
"source": """
|
322 |
-
# Specify the column name that contains the text data to generate embeddings
|
323 |
-
column_to_generate_embeddings = '{longest_col}'
|
324 |
-
""",
|
325 |
-
},
|
326 |
-
{
|
327 |
-
"cell_type": "markdown",
|
328 |
-
"source": "## 2. Loading embedding model and creating FAISS index",
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"cell_type": "code",
|
332 |
-
"source": """
|
333 |
-
# Remove duplicate entries based on the specified column
|
334 |
-
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
335 |
-
""",
|
336 |
-
},
|
337 |
-
{
|
338 |
-
"cell_type": "code",
|
339 |
-
"source": """
|
340 |
-
# Convert the column data to a list of text entries
|
341 |
-
text_list = df[column_to_generate_embeddings].tolist()
|
342 |
-
""",
|
343 |
-
},
|
344 |
-
{
|
345 |
-
"cell_type": "code",
|
346 |
-
"source": """
|
347 |
-
# Specify the embedding model you want to use
|
348 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
349 |
-
""",
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"cell_type": "code",
|
353 |
-
"source": """
|
354 |
-
vectors = model.encode(text_list)
|
355 |
-
vector_dimension = vectors.shape[1]
|
356 |
-
|
357 |
-
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
358 |
-
index = faiss.IndexFlatL2(vector_dimension)
|
359 |
-
|
360 |
-
# Encode the text list into embeddings and add them to the FAISS index
|
361 |
-
index.add(vectors)
|
362 |
-
""",
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"cell_type": "markdown",
|
366 |
-
"source": "## 3. Perform a text search",
|
367 |
-
},
|
368 |
-
{
|
369 |
-
"cell_type": "code",
|
370 |
-
"source": """
|
371 |
-
# Specify the text you want to search for in the list
|
372 |
-
query = "How to cook sushi?"
|
373 |
-
|
374 |
-
# Generate the embedding for the search query
|
375 |
-
query_embedding = model.encode([query])
|
376 |
-
""",
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"cell_type": "code",
|
380 |
-
"source": """
|
381 |
-
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
382 |
-
D, I = index.search(query_embedding, k=10)
|
383 |
-
|
384 |
-
# Print the similar documents found
|
385 |
-
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
386 |
-
""",
|
387 |
-
},
|
388 |
-
{
|
389 |
-
"cell_type": "markdown",
|
390 |
-
"source": "## 4. Load pipeline and perform inference locally",
|
391 |
-
},
|
392 |
-
{
|
393 |
-
"cell_type": "code",
|
394 |
-
"source": """
|
395 |
-
# Adjust model name as needed
|
396 |
-
checkpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'
|
397 |
-
|
398 |
-
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
|
399 |
-
|
400 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
401 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
402 |
-
|
403 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
|
404 |
-
""",
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"cell_type": "code",
|
408 |
-
"source": """
|
409 |
-
# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query
|
410 |
-
selected_elements = [text_list[i] for i in I[0].tolist()]
|
411 |
-
context = ','.join(selected_elements)
|
412 |
-
messages = [
|
413 |
-
{
|
414 |
-
"role": "system",
|
415 |
-
"content": f"You are an intelligent assistant tasked with providing accurate and concise answers based on the following context. Use the information retrieved to construct your response. Context: {context}",
|
416 |
-
},
|
417 |
-
{"role": "user", "content": query},
|
418 |
-
]
|
419 |
-
""",
|
420 |
-
},
|
421 |
-
{
|
422 |
-
"cell_type": "code",
|
423 |
-
"source": """
|
424 |
-
# Send the prompt to the pipeline and show the answer
|
425 |
-
output = generator(messages)
|
426 |
-
print("Generated result:")
|
427 |
-
print(output[0]['generated_text'][-1]['content']) # Print the assistant's response content
|
428 |
-
""",
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"cell_type": "markdown",
|
432 |
-
"source": "## 5. Alternatively call the inference client",
|
433 |
-
},
|
434 |
-
{
|
435 |
-
"cell_type": "code",
|
436 |
-
"source": """
|
437 |
-
# Adjust model name as needed
|
438 |
-
checkpoint = "meta-llama/Meta-Llama-3-8B-Instruct"
|
439 |
-
|
440 |
-
# Change here your Hugging Face API token
|
441 |
-
token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
442 |
-
|
443 |
-
inference_client = InferenceClient(checkpoint, token=token)
|
444 |
-
output = inference_client.chat_completion(messages=messages, stream=False)
|
445 |
-
print("Generated result:")
|
446 |
-
print(output.choices[0].message.content)
|
447 |
-
""",
|
448 |
-
},
|
449 |
-
]
|
450 |
-
|
451 |
-
|
452 |
-
def generate_rag_system_prompt():
|
453 |
-
"""
|
454 |
-
|
455 |
-
1. Install necessary libraries.
|
456 |
-
2. Import libraries.
|
457 |
-
3. Load the dataset as a DataFrame using the provided code.
|
458 |
-
4. Select the column for generating embeddings.
|
459 |
-
5. Remove duplicate data.
|
460 |
-
6. Convert the selected column to a list.
|
461 |
-
7. Load the sentence-transformers model.
|
462 |
-
8. Create a FAISS index.
|
463 |
-
9. Encode a query sample.
|
464 |
-
10. Search for similar documents using the FAISS index.
|
465 |
-
11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
|
466 |
-
12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
|
467 |
-
13. Send the prompt to the pipeline and display the answer.
|
468 |
-
|
469 |
-
Ensure the notebook is well-organized with explanations for each step.
|
470 |
-
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
471 |
-
|
472 |
-
The user will provide the dataset information in the following format:
|
473 |
-
|
474 |
-
## Columns and Data Types
|
475 |
-
|
476 |
-
## Sample Data
|
477 |
-
|
478 |
-
## Loading Data code
|
479 |
-
|
480 |
-
Use the provided code to load the dataset; do not use any other method.
|
481 |
-
"""
|
482 |
-
|
483 |
-
|
484 |
def load_json_files_from_folder(folder_path):
|
485 |
components = {}
|
486 |
|
|
|
24 |
return new_templates
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def load_json_files_from_folder(folder_path):
|
28 |
components = {}
|
29 |
|