# https://huggingface.co/spaces/asigalov61/MIDI-Search import os import time as reqtime import datetime from pytz import timezone import numpy as np import gradio as gr import copy import random import pickle import zlib from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt #========================================================================================================== def find_midi(title, artist): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('-' * 70) print('Req title:', title) print('Req artist:', artist) print('-' * 70) input_text = '' if title != '': input_text += title if artist != '': input_text += ' by ' + artist print('Searching...') query_embedding = model.encode([input_text]) # Compute cosine similarity between query and each sentence in the corpus similarities = util.cos_sim(query_embedding, corpus_embeddings) # Find the index of the most similar sentence closest_index = np.argmax(similarities) closest_index_match_ratio = max(similarities[0]).tolist() best_corpus_match = all_MIDI_files_names[closest_index] print('Done!') print('=' * 70) print('Match corpus index', closest_index) print('Match corpus ratio', closest_index_match_ratio) print('=' * 70) print('Done!') print('=' * 70) song_artist = best_corpus_match[0] zlib_file_name = best_corpus_match[1] print('Fetching MIDI score...') with open(zlib_file_name, 'rb') as f: compressed_data = f.read() # Decompress the data decompressed_data = zlib.decompress(compressed_data) # Convert the bytes back to a list using pickle scores_data = pickle.loads(decompressed_data) fnames = [f[0] for f in scores_data] fnameidx = fnames.index(song_artist) MIDI_score_data = scores_data[fnameidx][1] print('Sample INTs', MIDI_score_data[:12]) print('=' * 70) if len(outy) != 0: song = outy song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 2304: dur = ((ss-256) // 8) * 16 vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) x = [] y = [] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'lightgreen', 'indigo', 'maroon', 'turquoise'] for s in [m for m in song_f if m[0] == 'note']: x.append(s[1]) y.append(s[4]) c.append(colors[s[3]]) plt.close() plt.figure(figsize=(14,5)) ax=plt.axes(title='MIDI Match Plot') ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time in MIDI ticks") plt.ylabel("MIDI Pitch") output_signature = AUX_DATA[search_index][0] track_name = 'Project Los Angeles' text_encoding = 'ISO-8859-1' list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] output_header = [1000, [['set_tempo', 0, 1000000], ['time_signature', 0, 4, 2, 24, 8], ['track_name', 0, bytes(output_signature, text_encoding)]]] patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], ['patch_change', 0, 1, list_of_MIDI_patches[1]], ['patch_change', 0, 2, list_of_MIDI_patches[2]], ['patch_change', 0, 3, list_of_MIDI_patches[3]], ['patch_change', 0, 4, list_of_MIDI_patches[4]], ['patch_change', 0, 5, list_of_MIDI_patches[5]], ['patch_change', 0, 6, list_of_MIDI_patches[6]], ['patch_change', 0, 7, list_of_MIDI_patches[7]], ['patch_change', 0, 8, list_of_MIDI_patches[8]], ['patch_change', 0, 9, list_of_MIDI_patches[9]], ['patch_change', 0, 10, list_of_MIDI_patches[10]], ['patch_change', 0, 11, list_of_MIDI_patches[11]], ['patch_change', 0, 12, list_of_MIDI_patches[12]], ['patch_change', 0, 13, list_of_MIDI_patches[13]], ['patch_change', 0, 14, list_of_MIDI_patches[14]], ['patch_change', 0, 15, list_of_MIDI_patches[15]], ['track_name', 0, bytes(track_name, text_encoding)]] output = output_header + [patch_list + song_f] with open(f"MIDI-Search-Sample.mid", 'wb') as f: f.write(MIDI.score2midi(output)) audio = synthesis(MIDI.score2opus(output), soundfont_path) yield AUX_DATA[search_index][0], "MIDI-Search-Sample.mid", (44100, audio), plt #========================================================================================================== if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" print('Loading files list...') all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('all_MIDI_files_names') print('Done!') print('=' * 70) print('Loading clean_midi corpus...') clean_midi_artist_song_description_summaries_lyrics_score = TMIDIX.Tegridy_Any_Pickle_File_Reader('clean_midi_artist_song_description_summaries_lyrics_scores') print('Done!') print('=' * 70) print('Loading MIDI corpus embeddings...') corpus_embeddings = np.load('MIDI_corpus_embeddings_all-mpnet-base-v2.npz')['data'] print('Done!') print('=' * 70) print('Loading Sentence Transformer model...') model = SentenceTransformer('all-mpnet-base-v2') print('Done!') print('=' * 70) app = gr.Blocks() with app: gr.Markdown("