Spaces:
Running
Running
import argparse | |
import glob | |
import os.path | |
import gradio as gr | |
import pickle | |
import tqdm | |
import json | |
import MIDI | |
from midi_synthesizer import synthesis | |
in_space = os.getenv("SYSTEM") == "spaces" | |
def find_midi(): | |
if disable_channels is not None: | |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] | |
else: | |
disable_channels = [] | |
max_token_seq = tokenizer.max_token_seq | |
if prompt is None: | |
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) | |
input_tensor[0, 0] = tokenizer.bos_id # bos | |
else: | |
prompt = prompt[:, :max_token_seq] | |
if prompt.shape[-1] < max_token_seq: | |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
input_tensor = prompt | |
input_tensor = input_tensor[None, :, :] | |
cur_len = input_tensor.shape[1] | |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) | |
with bar: | |
while cur_len < max_len: | |
end = False | |
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1] | |
next_token_seq = np.empty((1, 0), dtype=np.int64) | |
event_name = "" | |
for i in range(max_token_seq): | |
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) | |
if i == 0: | |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] | |
if disable_patch_change: | |
mask_ids.remove(tokenizer.event_ids["patch_change"]) | |
if disable_control_change: | |
mask_ids.remove(tokenizer.event_ids["control_change"]) | |
mask[mask_ids] = 1 | |
else: | |
param_name = tokenizer.events[event_name][i - 1] | |
mask_ids = tokenizer.parameter_ids[param_name] | |
if param_name == "channel": | |
mask_ids = [i for i in mask_ids if i not in disable_channels] | |
mask[mask_ids] = 1 | |
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] | |
scores = softmax(logits / temp, -1) * mask | |
sample = sample_top_p_k(scores, top_p, top_k) | |
if i == 0: | |
next_token_seq = sample | |
eid = sample.item() | |
if eid == tokenizer.eos_id: | |
end = True | |
break | |
event_name = tokenizer.id_events[eid] | |
else: | |
next_token_seq = np.concatenate([next_token_seq, sample], axis=1) | |
if len(tokenizer.events[event_name]) == i: | |
break | |
if next_token_seq.shape[1] < max_token_seq: | |
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
next_token_seq = next_token_seq[None, :, :] | |
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) | |
cur_len += 1 | |
bar.update(1) | |
yield next_token_seq.reshape(-1) | |
if end: | |
break | |
def create_msg(name, data): | |
return {"name": name, "data": data} | |
def run(search_prompt, mid=None): | |
mid_seq = [] | |
if mid == None: | |
for m in meta_data: | |
mid_seq.extend(m[1][17:]) | |
mid_seq_ticks = m[1][16][1] | |
break | |
elif mid is not None: | |
mid_seq = MIDI.midi2score(mid) | |
init_msgs = [create_msg("visualizer_clear", None)] | |
for event in mid_seq: | |
if event[0] == 'note': | |
init_msgs.append(create_msg("visualizer_append", event)) | |
yield mid_seq, None, None, init_msgs | |
# j = 0 | |
# for i in range(len(mid_seq)-1): | |
# if mid_seq[i][0] == 'note': | |
# j += 1 | |
# yield mid_seq, None, None, [create_msg("visualizer_append", mid_seq[i]), create_msg("progress", [j + 1, len(mid_seq)])] | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi([mid_seq_ticks, mid_seq])) | |
audio = synthesis(MIDI.score2opus([mid_seq_ticks, mid_seq]), soundfont_path) | |
yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)] | |
def cancel_run(mid_seq): | |
if mid_seq is None: | |
return None, None | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid_seq)) | |
audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path) | |
return "output.mid", (44100, audio), [create_msg("visualizer_end", None)] | |
def load_javascript(dir="javascript"): | |
scripts_list = glob.glob(f"{dir}/*.js") | |
javascript = "" | |
for path in scripts_list: | |
with open(path, "r", encoding="utf8") as jsfile: | |
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>" | |
template_response_ori = gr.routes.templates.TemplateResponse | |
def template_response(*args, **kwargs): | |
res = template_response_ori(*args, **kwargs) | |
res.body = res.body.replace( | |
b'</head>', f'{javascript}</head>'.encode("utf8")) | |
res.init_headers() | |
return res | |
gr.routes.templates.TemplateResponse = template_response | |
class JSMsgReceiver(gr.HTML): | |
def __init__(self, **kwargs): | |
super().__init__(elem_id="msg_receiver", visible=False, **kwargs) | |
def postprocess(self, y): | |
if y: | |
y = f"<p>{json.dumps(y)}</p>" | |
return super().postprocess(y) | |
def get_block_name(self) -> str: | |
return "html" | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
opt = parser.parse_args() | |
soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
meta_data_path = "meta-data/LAMD_META_10000.pickle" | |
models_info = {"generic pretrain model": ["skytnt/midi-model", ""], | |
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"], | |
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]} | |
print('Loading meta-data...') | |
with open(meta_data_path, 'rb') as f: | |
meta_data = pickle.load(f) | |
print('Done!') | |
load_javascript() | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Search</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n" | |
"MIDI Search and Explore\n\n" | |
"Demo for [MIDI Search](https://github.com/asigalov61)\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/MIDI-Search/blob/main/demo.ipynb)" | |
" for faster running and longer generation" | |
) | |
js_msg = JSMsgReceiver() | |
with gr.Tabs(): | |
with gr.TabItem("instrument prompt") as tab1: | |
search_prompt = gr.Textbox(label="search prompt") | |
with gr.TabItem("midi prompt") as tab2: | |
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") | |
with gr.Accordion("options", open=False): | |
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True) | |
search_btn = gr.Button("search", variant="primary") | |
stop_btn = gr.Button("stop and output") | |
output_midi_seq = gr.Textbox() | |
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container") | |
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") | |
output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
run_event = search_btn.click(run, [search_prompt], | |
[output_midi_seq, output_midi, output_audio, js_msg]) | |
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False) | |
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |