Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import torch | |
from trainer import Trainer, TrainerArgs | |
from tests import get_tests_output_path | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.layers.xtts.dvae import DiscreteVAE | |
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig | |
config_dataset = BaseDatasetConfig( | |
formatter="ljspeech", | |
dataset_name="ljspeech", | |
path="tests/data/ljspeech/", | |
meta_file_train="metadata.csv", | |
meta_file_val="metadata.csv", | |
language="en", | |
) | |
DATASETS_CONFIG_LIST = [config_dataset] | |
# Logging parameters | |
RUN_NAME = "GPT_XTTS_LJSpeech_FT" | |
PROJECT_NAME = "XTTS_trainer" | |
DASHBOARD_LOGGER = "tensorboard" | |
LOGGER_URI = None | |
OUT_PATH = os.path.join(get_tests_output_path(), "train_outputs", "xtts_tests") | |
os.makedirs(OUT_PATH, exist_ok=True) | |
# Create DVAE checkpoint and mel_norms on test time | |
# DVAE parameters: For the training we need the dvae to extract the dvae tokens, given that you must provide the paths for this model | |
DVAE_CHECKPOINT = os.path.join(OUT_PATH, "dvae.pth") # DVAE checkpoint | |
# Mel spectrogram norms, required for dvae mel spectrogram extraction | |
MEL_NORM_FILE = os.path.join(OUT_PATH, "mel_stats.pth") | |
dvae = DiscreteVAE( | |
channels=80, | |
normalization=None, | |
positional_dims=1, | |
num_tokens=8192, | |
codebook_dim=512, | |
hidden_dim=512, | |
num_resnet_blocks=3, | |
kernel_size=3, | |
num_layers=2, | |
use_transposed_convs=False, | |
) | |
torch.save(dvae.state_dict(), DVAE_CHECKPOINT) | |
mel_stats = torch.ones(80) | |
torch.save(mel_stats, MEL_NORM_FILE) | |
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. | |
TOKENIZER_FILE = "tests/inputs/xtts_vocab.json" # vocab.json file | |
XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_style_emb_repetition_fix_gt/132500_gpt_ema_coqui_tts_with_enhanced_hifigan.pth" # model.pth file | |
# Training sentences generations | |
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences | |
LANGUAGE = config_dataset.language | |
# Training Parameters | |
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False | |
START_WITH_EVAL = False # if True it will star with evaluation | |
BATCH_SIZE = 2 # set here the batch size | |
GRAD_ACUMM_STEPS = 1 # set here the grad accumulation steps | |
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly. | |
# init args and config | |
model_args = GPTArgs( | |
max_conditioning_length=132300, # 6 secs | |
min_conditioning_length=66150, # 3 secs | |
debug_loading_failures=False, | |
max_wav_length=255995, # ~11.6 seconds | |
max_text_length=200, | |
mel_norm_file=MEL_NORM_FILE, | |
dvae_checkpoint=DVAE_CHECKPOINT, | |
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune | |
tokenizer_file=TOKENIZER_FILE, | |
gpt_num_audio_tokens=8194, | |
gpt_start_audio_token=8192, | |
gpt_stop_audio_token=8193, | |
gpt_use_masking_gt_prompt_approach=True, | |
gpt_use_perceiver_resampler=True, | |
) | |
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) | |
config = GPTTrainerConfig( | |
epochs=1, | |
output_path=OUT_PATH, | |
model_args=model_args, | |
run_name=RUN_NAME, | |
project_name=PROJECT_NAME, | |
run_description="GPT XTTS training", | |
dashboard_logger=DASHBOARD_LOGGER, | |
logger_uri=LOGGER_URI, | |
audio=audio_config, | |
batch_size=BATCH_SIZE, | |
batch_group_size=48, | |
eval_batch_size=BATCH_SIZE, | |
num_loader_workers=8, | |
eval_split_max_size=256, | |
print_step=50, | |
plot_step=100, | |
log_model_step=1000, | |
save_step=10000, | |
save_n_checkpoints=1, | |
save_checkpoints=True, | |
# target_loss="loss", | |
print_eval=False, | |
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters. | |
optimizer="AdamW", | |
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, | |
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, | |
lr=5e-06, # learning rate | |
lr_scheduler="MultiStepLR", | |
# it was adjusted accordly for the new step scheme | |
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, | |
test_sentences=[ | |
{ | |
"text": "This cake is great. It's so delicious and moist.", | |
"speaker_wav": SPEAKER_REFERENCE, | |
"language": LANGUAGE, | |
}, | |
], | |
) | |
# init the model from config | |
model = GPTTrainer.init_from_config(config) | |
# load training samples | |
train_samples, eval_samples = load_tts_samples( | |
DATASETS_CONFIG_LIST, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs( | |
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter | |
skip_train_epoch=False, | |
start_with_eval=True, | |
grad_accum_steps=GRAD_ACUMM_STEPS, | |
), | |
config, | |
output_path=OUT_PATH, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |
# remove output path | |
shutil.rmtree(OUT_PATH) | |