video-dubbing / TTS /tests /xtts_tests /test_xtts_gpt_train.py
artificialguybr's picture
Upload 659 files
46a75d7
raw
history blame
5.53 kB
import os
import shutil
import torch
from trainer import Trainer, TrainerArgs
from tests import get_tests_output_path
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.dvae import DiscreteVAE
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
config_dataset = BaseDatasetConfig(
formatter="ljspeech",
dataset_name="ljspeech",
path="tests/data/ljspeech/",
meta_file_train="metadata.csv",
meta_file_val="metadata.csv",
language="en",
)
DATASETS_CONFIG_LIST = [config_dataset]
# Logging parameters
RUN_NAME = "GPT_XTTS_LJSpeech_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = os.path.join(get_tests_output_path(), "train_outputs", "xtts_tests")
os.makedirs(OUT_PATH, exist_ok=True)
# Create DVAE checkpoint and mel_norms on test time
# DVAE parameters: For the training we need the dvae to extract the dvae tokens, given that you must provide the paths for this model
DVAE_CHECKPOINT = os.path.join(OUT_PATH, "dvae.pth") # DVAE checkpoint
MEL_NORM_FILE = os.path.join(
OUT_PATH, "mel_stats.pth"
) # Mel spectrogram norms, required for dvae mel spectrogram extraction
dvae = DiscreteVAE(
channels=80,
normalization=None,
positional_dims=1,
num_tokens=8192,
codebook_dim=512,
hidden_dim=512,
num_resnet_blocks=3,
kernel_size=3,
num_layers=2,
use_transposed_convs=False,
)
torch.save(dvae.state_dict(), DVAE_CHECKPOINT)
mel_stats = torch.ones(80)
torch.save(mel_stats, MEL_NORM_FILE)
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = "tests/inputs/xtts_vocab.json" # vocab.json file
XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_style_emb_repetition_fix_gt/132500_gpt_ema_coqui_tts_with_enhanced_hifigan.pth" # model.pth file
# Training sentences generations
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences
LANGUAGE = config_dataset.language
# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = False # if True it will star with evaluation
BATCH_SIZE = 2 # set here the batch size
GRAD_ACUMM_STEPS = 1 # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=255995, # ~11.6 seconds
max_text_length=200,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=8194,
gpt_start_audio_token=8192,
gpt_stop_audio_token=8193,
)
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
config = GPTTrainerConfig(
epochs=1,
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=10000,
save_n_checkpoints=1,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
test_sentences=[
{
"text": "This cake is great. It's so delicious and moist.",
"speaker_wav": SPEAKER_REFERENCE,
"language": LANGUAGE,
},
],
)
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=True,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
# remove output path
shutil.rmtree(OUT_PATH)