Spaces:
Running
on
Zero
Running
on
Zero
import torch as T | |
from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs | |
from TTS.tts.utils.helpers import sequence_mask | |
# pylint: disable=unused-variable | |
def expand_encoder_outputs_test(): | |
model = ForwardTTS(ForwardTTSArgs(num_chars=10)) | |
inputs = T.rand(2, 5, 57) | |
durations = T.randint(1, 4, (2, 57)) | |
x_mask = T.ones(2, 1, 57) | |
y_mask = T.ones(2, 1, durations.sum(1).max()) | |
expanded, _ = model.expand_encoder_outputs(inputs, durations, x_mask, y_mask) | |
for b in range(durations.shape[0]): | |
index = 0 | |
for idx, dur in enumerate(durations[b]): | |
diff = ( | |
expanded[b, :, index : index + dur.item()] | |
- inputs[b, :, idx].repeat(dur.item()).view(expanded[b, :, index : index + dur.item()].shape) | |
).sum() | |
assert abs(diff) < 1e-6, diff | |
index += dur | |
def model_input_output_test(): | |
"""Assert the output shapes of the model in different modes""" | |
# VANILLA MODEL | |
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=False)) | |
x = T.randint(0, 10, (2, 21)) | |
x_lengths = T.randint(10, 22, (2,)) | |
x_lengths[-1] = 21 | |
x_mask = sequence_mask(x_lengths).unsqueeze(1).long() | |
durations = T.randint(1, 4, (2, 21)) | |
durations = durations * x_mask.squeeze(1) | |
y_lengths = durations.sum(1) | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).long() | |
outputs = model.forward(x, x_lengths, y_lengths, dr=durations) | |
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) | |
assert outputs["durations_log"].shape == (2, 21) | |
assert outputs["durations"].shape == (2, 21) | |
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) | |
assert (outputs["x_mask"] - x_mask).sum() == 0.0 | |
assert (outputs["y_mask"] - y_mask).sum() == 0.0 | |
assert outputs["alignment_soft"] is None | |
assert outputs["alignment_mas"] is None | |
assert outputs["alignment_logprob"] is None | |
assert outputs["o_alignment_dur"] is None | |
assert outputs["pitch_avg"] is None | |
assert outputs["pitch_avg_gt"] is None | |
# USE PITCH | |
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=False)) | |
x = T.randint(0, 10, (2, 21)) | |
x_lengths = T.randint(10, 22, (2,)) | |
x_lengths[-1] = 21 | |
x_mask = sequence_mask(x_lengths).unsqueeze(1).long() | |
durations = T.randint(1, 4, (2, 21)) | |
durations = durations * x_mask.squeeze(1) | |
y_lengths = durations.sum(1) | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).long() | |
pitch = T.rand(2, 1, y_lengths.max()) | |
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch) | |
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) | |
assert outputs["durations_log"].shape == (2, 21) | |
assert outputs["durations"].shape == (2, 21) | |
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) | |
assert (outputs["x_mask"] - x_mask).sum() == 0.0 | |
assert (outputs["y_mask"] - y_mask).sum() == 0.0 | |
assert outputs["pitch_avg"].shape == (2, 1, 21) | |
assert outputs["pitch_avg_gt"].shape == (2, 1, 21) | |
assert outputs["alignment_soft"] is None | |
assert outputs["alignment_mas"] is None | |
assert outputs["alignment_logprob"] is None | |
assert outputs["o_alignment_dur"] is None | |
# USE ALIGNER NETWORK | |
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=False, use_aligner=True)) | |
x = T.randint(0, 10, (2, 21)) | |
x_lengths = T.randint(10, 22, (2,)) | |
x_lengths[-1] = 21 | |
x_mask = sequence_mask(x_lengths).unsqueeze(1).long() | |
durations = T.randint(1, 4, (2, 21)) | |
durations = durations * x_mask.squeeze(1) | |
y_lengths = durations.sum(1) | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).long() | |
y = T.rand(2, y_lengths.max(), 80) | |
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, y=y) | |
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) | |
assert outputs["durations_log"].shape == (2, 21) | |
assert outputs["durations"].shape == (2, 21) | |
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) | |
assert (outputs["x_mask"] - x_mask).sum() == 0.0 | |
assert (outputs["y_mask"] - y_mask).sum() == 0.0 | |
assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21) | |
assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21) | |
assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21) | |
assert outputs["o_alignment_dur"].shape == (2, 21) | |
assert outputs["pitch_avg"] is None | |
assert outputs["pitch_avg_gt"] is None | |
# USE ALIGNER NETWORK AND PITCH | |
model = ForwardTTS(ForwardTTSArgs(num_chars=10, use_pitch=True, use_aligner=True)) | |
x = T.randint(0, 10, (2, 21)) | |
x_lengths = T.randint(10, 22, (2,)) | |
x_lengths[-1] = 21 | |
x_mask = sequence_mask(x_lengths).unsqueeze(1).long() | |
durations = T.randint(1, 4, (2, 21)) | |
durations = durations * x_mask.squeeze(1) | |
y_lengths = durations.sum(1) | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).long() | |
y = T.rand(2, y_lengths.max(), 80) | |
pitch = T.rand(2, 1, y_lengths.max()) | |
outputs = model.forward(x, x_lengths, y_lengths, dr=durations, pitch=pitch, y=y) | |
assert outputs["model_outputs"].shape == (2, durations.sum(1).max(), 80) | |
assert outputs["durations_log"].shape == (2, 21) | |
assert outputs["durations"].shape == (2, 21) | |
assert outputs["alignments"].shape == (2, durations.sum(1).max(), 21) | |
assert (outputs["x_mask"] - x_mask).sum() == 0.0 | |
assert (outputs["y_mask"] - y_mask).sum() == 0.0 | |
assert outputs["alignment_soft"].shape == (2, durations.sum(1).max(), 21) | |
assert outputs["alignment_mas"].shape == (2, durations.sum(1).max(), 21) | |
assert outputs["alignment_logprob"].shape == (2, 1, durations.sum(1).max(), 21) | |
assert outputs["o_alignment_dur"].shape == (2, 21) | |
assert outputs["pitch_avg"].shape == (2, 1, 21) | |
assert outputs["pitch_avg_gt"].shape == (2, 1, 21) | |