Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
from torch.utils.data import DataLoader | |
from tests import get_tests_output_path, get_tests_path | |
from TTS.utils.audio import AudioProcessor | |
from TTS.vocoder.configs import BaseGANVocoderConfig | |
from TTS.vocoder.datasets.gan_dataset import GANDataset | |
from TTS.vocoder.datasets.preprocess import load_wav_data | |
file_path = os.path.dirname(os.path.realpath(__file__)) | |
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") | |
os.makedirs(OUTPATH, exist_ok=True) | |
C = BaseGANVocoderConfig() | |
test_data_path = os.path.join(get_tests_path(), "data/ljspeech/") | |
ok_ljspeech = os.path.exists(test_data_path) | |
def gan_dataset_case( | |
batch_size, seq_len, hop_len, conv_pad, return_pairs, return_segments, use_noise_augment, use_cache, num_workers | |
): | |
"""Run dataloader with given parameters and check conditions""" | |
ap = AudioProcessor(**C.audio) | |
_, train_items = load_wav_data(test_data_path, 10) | |
dataset = GANDataset( | |
ap, | |
train_items, | |
seq_len=seq_len, | |
hop_len=hop_len, | |
pad_short=2000, | |
conv_pad=conv_pad, | |
return_pairs=return_pairs, | |
return_segments=return_segments, | |
use_noise_augment=use_noise_augment, | |
use_cache=use_cache, | |
) | |
loader = DataLoader( | |
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True | |
) | |
max_iter = 10 | |
count_iter = 0 | |
def check_item(feat, wav): | |
"""Pass a single pair of features and waveform""" | |
feat = feat.numpy() | |
wav = wav.numpy() | |
expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2) | |
# check shapes | |
assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}" | |
assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] | |
# check feature vs audio match | |
if not use_noise_augment: | |
for idx in range(batch_size): | |
audio = wav[idx].squeeze() | |
feat = feat[idx] | |
mel = ap.melspectrogram(audio) | |
# the first 2 and the last 2 frames are skipped due to the padding | |
# differences in stft | |
max_diff = abs((feat - mel[:, : feat.shape[-1]])[:, 2:-2]).max() | |
assert max_diff <= 1e-6, f" [!] {max_diff}" | |
# return random segments or return the whole audio | |
if return_segments: | |
if return_pairs: | |
for item1, item2 in loader: | |
feat1, wav1 = item1 | |
feat2, wav2 = item2 | |
check_item(feat1, wav1) | |
check_item(feat2, wav2) | |
count_iter += 1 | |
else: | |
for item1 in loader: | |
feat1, wav1 = item1 | |
check_item(feat1, wav1) | |
count_iter += 1 | |
else: | |
for item in loader: | |
feat, wav = item | |
expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2)) | |
assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}" | |
assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] | |
count_iter += 1 | |
if count_iter == max_iter: | |
break | |
def test_parametrized_gan_dataset(): | |
"""test dataloader with different parameters""" | |
params = [ | |
[32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0], | |
[32, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 4], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, True, True, 0], | |
[1, C.audio["hop_length"], C.audio["hop_length"], 0, True, True, True, True, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 2, True, True, True, True, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, True, True, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, True, False, True, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, False, True, True, False, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0], | |
[1, C.audio["hop_length"] * 10, C.audio["hop_length"], 0, True, False, False, False, 0], | |
] | |
for param in params: | |
print(param) | |
gan_dataset_case(*param) | |