Spaces:
Running
on
Zero
Running
on
Zero
import glob | |
import os | |
import shutil | |
from tests import get_device_id, get_tests_output_path, run_cli | |
from TTS.vocoder.configs import FullbandMelganConfig | |
config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json") | |
output_path = os.path.join(get_tests_output_path(), "train_outputs") | |
config = FullbandMelganConfig( | |
batch_size=8, | |
eval_batch_size=8, | |
num_loader_workers=0, | |
num_eval_loader_workers=0, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1, | |
seq_len=8192, | |
eval_split_size=1, | |
print_step=1, | |
print_eval=True, | |
data_path="tests/data/ljspeech", | |
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]}, | |
output_path=output_path, | |
) | |
config.audio.do_trim_silence = True | |
config.audio.trim_db = 60 | |
config.save_json(config_path) | |
# train the model for one epoch | |
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} " | |
run_cli(command_train) | |
# Find latest folder | |
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) | |
# restore the model and continue training for one more epoch | |
command_train = ( | |
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} " | |
) | |
run_cli(command_train) | |
shutil.rmtree(continue_path) | |