Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from trainer import Trainer, TrainerArgs | |
from TTS.bin.compute_embeddings import compute_embeddings | |
from TTS.bin.resample import resample_files | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.configs.vits_config import VitsConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig | |
from TTS.utils.downloaders import download_libri_tts | |
torch.set_num_threads(24) | |
# pylint: disable=W0105 | |
""" | |
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model. | |
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. | |
""" | |
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) | |
# Name of the run for the Trainer | |
RUN_NAME = "YourTTS-CML-TTS" | |
# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs) | |
OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/" | |
# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p | |
RESTORE_PATH = "/raid/edresson/CML_YourTTS/checkpoints_yourtts_cml_tts_dataset/best_model.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p | |
# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences | |
SKIP_TRAIN_EPOCH = False | |
# Set here the batch size to be used in training and evaluation | |
BATCH_SIZE = 32 | |
# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!) | |
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios | |
SAMPLE_RATE = 24000 | |
# Max audio length in seconds to be used in training (every audio bigger than it will be ignored) | |
MAX_AUDIO_LEN_IN_SECONDS = float("inf") | |
### Download CML-TTS dataset | |
# You need to download the dataset for all languages manually and extract it to a path and then set the CML_DATASET_PATH to this path: https://github.com/freds0/CML-TTS-Dataset#download | |
CML_DATASET_PATH = "./datasets/CML-TTS-Dataset/" | |
### Download LibriTTS dataset | |
# it will automatic download the dataset, if you have problems you can comment it and manually donwload and extract it ! Download link: https://www.openslr.org/resources/60/train-clean-360.tar.gz | |
LIBRITTS_DOWNLOAD_PATH = "./datasets/LibriTTS/" | |
# Check if LibriTTS dataset is not already downloaded, if not download it | |
if not os.path.exists(LIBRITTS_DOWNLOAD_PATH): | |
print(">>> Downloading LibriTTS dataset:") | |
download_libri_tts(LIBRITTS_DOWNLOAD_PATH, subset="libri-tts-clean-360") | |
# init LibriTTS configs | |
libritts_config = BaseDatasetConfig( | |
formatter="libri_tts", | |
dataset_name="libri_tts", | |
meta_file_train="", | |
meta_file_val="", | |
path=os.path.join(LIBRITTS_DOWNLOAD_PATH, "train-clean-360/"), | |
language="en", | |
) | |
# init CML-TTS configs | |
pt_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_portuguese_v0.1/"), | |
language="pt-br", | |
) | |
pl_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_polish_v0.1/"), | |
language="pl", | |
) | |
it_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_italian_v0.1/"), | |
language="it", | |
) | |
fr_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_french_v0.1/"), | |
language="fr", | |
) | |
du_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_dutch_v0.1/"), | |
language="du", | |
) | |
ge_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_german_v0.1/"), | |
language="ge", | |
) | |
sp_config = BaseDatasetConfig( | |
formatter="cml_tts", | |
dataset_name="cml_tts", | |
meta_file_train="train.csv", | |
meta_file_val="", | |
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_spanish_v0.1/"), | |
language="sp", | |
) | |
# Add here all datasets configs Note: If you want to add new datasets, just add them here and it will automatically compute the speaker embeddings (d-vectors) for this new dataset :) | |
DATASETS_CONFIG_LIST = [libritts_config, pt_config, pl_config, it_config, fr_config, du_config, ge_config, sp_config] | |
### Extract speaker embeddings | |
SPEAKER_ENCODER_CHECKPOINT_PATH = ( | |
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" | |
) | |
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" | |
D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training | |
# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it | |
for dataset_conf in DATASETS_CONFIG_LIST: | |
# Check if the embeddings weren't already computed, if not compute it | |
embeddings_file = os.path.join(dataset_conf.path, "speakers.pth") | |
if not os.path.isfile(embeddings_file): | |
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") | |
compute_embeddings( | |
SPEAKER_ENCODER_CHECKPOINT_PATH, | |
SPEAKER_ENCODER_CONFIG_PATH, | |
embeddings_file, | |
old_speakers_file=None, | |
config_dataset_path=None, | |
formatter_name=dataset_conf.formatter, | |
dataset_name=dataset_conf.dataset_name, | |
dataset_path=dataset_conf.path, | |
meta_file_train=dataset_conf.meta_file_train, | |
meta_file_val=dataset_conf.meta_file_val, | |
disable_cuda=False, | |
no_eval=False, | |
) | |
D_VECTOR_FILES.append(embeddings_file) | |
# Audio config used in training. | |
audio_config = VitsAudioConfig( | |
sample_rate=SAMPLE_RATE, | |
hop_length=256, | |
win_length=1024, | |
fft_size=1024, | |
mel_fmin=0.0, | |
mel_fmax=None, | |
num_mels=80, | |
) | |
# Init VITSArgs setting the arguments that are needed for the YourTTS model | |
model_args = VitsArgs( | |
spec_segment_size=62, | |
hidden_channels=192, | |
hidden_channels_ffn_text_encoder=768, | |
num_heads_text_encoder=2, | |
num_layers_text_encoder=10, | |
kernel_size_text_encoder=3, | |
dropout_p_text_encoder=0.1, | |
d_vector_file=D_VECTOR_FILES, | |
use_d_vector_file=True, | |
d_vector_dim=512, | |
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, | |
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, | |
resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model | |
# Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper | |
use_speaker_encoder_as_loss=False, | |
# Useful parameters to enable multilingual training | |
use_language_embedding=True, | |
embedded_language_dim=4, | |
) | |
# General training config, here you can change the batch size and others useful parameters | |
config = VitsConfig( | |
output_path=OUT_PATH, | |
model_args=model_args, | |
run_name=RUN_NAME, | |
project_name="YourTTS", | |
run_description=""" | |
- YourTTS trained using CML-TTS and LibriTTS datasets | |
""", | |
dashboard_logger="tensorboard", | |
logger_uri=None, | |
audio=audio_config, | |
batch_size=BATCH_SIZE, | |
batch_group_size=48, | |
eval_batch_size=BATCH_SIZE, | |
num_loader_workers=8, | |
eval_split_max_size=256, | |
print_step=50, | |
plot_step=100, | |
log_model_step=1000, | |
save_step=5000, | |
save_n_checkpoints=2, | |
save_checkpoints=True, | |
target_loss="loss_1", | |
print_eval=False, | |
use_phonemes=False, | |
phonemizer="espeak", | |
phoneme_language="en", | |
compute_input_seq_cache=True, | |
add_blank=True, | |
text_cleaner="multilingual_cleaners", | |
characters=CharactersConfig( | |
characters_class="TTS.tts.models.vits.VitsCharacters", | |
pad="_", | |
eos="&", | |
bos="*", | |
blank=None, | |
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20", | |
punctuations="\u2014!'(),-.:;?\u00bf ", | |
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ", | |
is_unique=True, | |
is_sorted=True, | |
), | |
phoneme_cache_path=None, | |
precompute_num_workers=12, | |
start_by_longest=True, | |
datasets=DATASETS_CONFIG_LIST, | |
cudnn_benchmark=False, | |
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, | |
mixed_precision=False, | |
test_sentences=[ | |
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "9351", None, "pt-br"], | |
["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "12249", None, "pt-br"], | |
[ | |
"S\u00e3o necess\u00e1rios muitos anos de trabalho para ter sucesso da noite para o dia.", | |
"2961", | |
None, | |
"pt-br", | |
], | |
["You'll have the view of the top of the mountain that you climb.", "LTTS_6574", None, "en"], | |
["When you don\u2019t take any risks, you risk everything.", "LTTS_6206", None, "en"], | |
["Are necessary too many years of work to succeed overnight.", "LTTS_5717", None, "en"], | |
["Je hebt uitzicht op de top van de berg die je beklimt.", "960", None, "du"], | |
["Als je geen risico neemt, riskeer je alles.", "2450", None, "du"], | |
["Zijn te veel jaren werk nodig om van de ene op de andere dag te slagen.", "10984", None, "du"], | |
["Vous aurez la vue sur le sommet de la montagne que vous gravirez.", "6381", None, "fr"], | |
["Quand tu ne prends aucun risque, tu risques tout.", "2825", None, "fr"], | |
[ | |
"Sont n\u00e9cessaires trop d'ann\u00e9es de travail pour r\u00e9ussir du jour au lendemain.", | |
"1844", | |
None, | |
"fr", | |
], | |
["Sie haben die Aussicht auf die Spitze des Berges, den Sie erklimmen.", "2314", None, "ge"], | |
["Wer nichts riskiert, riskiert alles.", "7483", None, "ge"], | |
["Es sind zu viele Jahre Arbeit notwendig, um \u00fcber Nacht erfolgreich zu sein.", "12461", None, "ge"], | |
["Avrai la vista della cima della montagna che sali.", "4998", None, "it"], | |
["Quando non corri alcun rischio, rischi tutto.", "6744", None, "it"], | |
["Are necessary too many years of work to succeed overnight.", "1157", None, "it"], | |
[ | |
"B\u0119dziesz mie\u0107 widok na szczyt g\u00f3ry, na kt\u00f3r\u0105 si\u0119 wspinasz.", | |
"7014", | |
None, | |
"pl", | |
], | |
["Kiedy nie podejmujesz \u017cadnego ryzyka, ryzykujesz wszystko.", "3492", None, "pl"], | |
[ | |
"Potrzebne s\u0105 zbyt wiele lat pracy, aby odnie\u015b\u0107 sukces z dnia na dzie\u0144.", | |
"1890", | |
None, | |
"pl", | |
], | |
["Tendr\u00e1s la vista de la cima de la monta\u00f1a que subes", "101", None, "sp"], | |
["Cuando no te arriesgas, lo arriesgas todo.", "5922", None, "sp"], | |
[ | |
"Son necesarios demasiados a\u00f1os de trabajo para triunfar de la noche a la ma\u00f1ana.", | |
"10246", | |
None, | |
"sp", | |
], | |
], | |
# Enable the weighted sampler | |
use_weighted_sampler=True, | |
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has | |
# weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0}, | |
weighted_sampler_attrs={"language": 1.0}, | |
weighted_sampler_multipliers={ | |
# "speaker_name": { | |
# you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch. | |
# It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt. | |
# The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset. | |
# 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106 | |
# } | |
}, | |
# It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper | |
speaker_encoder_loss_alpha=9.0, | |
) | |
# Load all the datasets samples and split traning and evaluation sets | |
train_samples, eval_samples = load_tts_samples( | |
config.datasets, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# Init the model | |
model = Vits.init_from_config(config) | |
# Init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH), | |
config, | |
output_path=OUT_PATH, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |