Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig | |
from TTS.tts.configs.fast_pitch_config import FastPitchConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.forward_tts import ForwardTTS | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.manage import ModelManager | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
# init configs | |
dataset_config = BaseDatasetConfig( | |
formatter="ljspeech", | |
meta_file_train="metadata.csv", | |
# meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), | |
path=os.path.join(output_path, "../LJSpeech-1.1/"), | |
) | |
audio_config = BaseAudioConfig( | |
sample_rate=22050, | |
do_trim_silence=True, | |
trim_db=60.0, | |
signal_norm=False, | |
mel_fmin=0.0, | |
mel_fmax=8000, | |
spec_gain=1.0, | |
log_func="np.log", | |
ref_level_db=20, | |
preemphasis=0.0, | |
) | |
config = FastPitchConfig( | |
run_name="fast_pitch_ljspeech", | |
audio=audio_config, | |
batch_size=32, | |
eval_batch_size=16, | |
num_loader_workers=8, | |
num_eval_loader_workers=4, | |
compute_input_seq_cache=True, | |
compute_f0=True, | |
f0_cache_path=os.path.join(output_path, "f0_cache"), | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="english_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
precompute_num_workers=4, | |
print_step=50, | |
print_eval=False, | |
mixed_precision=False, | |
max_seq_len=500000, | |
output_path=output_path, | |
datasets=[dataset_config], | |
) | |
# compute alignments | |
if not config.model_args.use_aligner: | |
manager = ModelManager() | |
model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") | |
# TODO: make compute_attention python callable | |
os.system( | |
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# If characters are not defined in the config, default characters are passed to the config | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init the model | |
model = ForwardTTS(config, ap, tokenizer, speaker_manager=None) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
trainer.fit() | |