Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import tempfile | |
import gradio as gr | |
import subprocess | |
import os, stat | |
import uuid | |
from googletrans import Translator | |
from TTS.api import TTS | |
import ffmpeg | |
import json | |
from scipy.signal import wiener | |
import soundfile as sf | |
from pydub import AudioSegment | |
import numpy as np | |
import librosa | |
from zipfile import ZipFile | |
import shlex | |
import cv2 | |
import torch | |
import torchvision | |
from tqdm import tqdm | |
from numba import jit | |
from huggingface_hub import HfApi | |
import moviepy.editor as mp | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
api = HfApi(token=HF_TOKEN) | |
repo_id = "artificialguybr/video-dubbing" | |
ZipFile("ffmpeg.zip").extractall() | |
st = os.stat('ffmpeg') | |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC) | |
print("Starting the program...") | |
def generate_unique_filename(extension): | |
return f"{uuid.uuid4()}{extension}" | |
def cleanup_files(*files): | |
for file in files: | |
if file and os.path.exists(file): | |
os.remove(file) | |
print(f"Removed file: {file}") | |
def check_for_faces(video_path): | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
cap = cv2.VideoCapture(video_path) | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
if len(faces) > 0: | |
return True | |
return False | |
def transcribe_audio(file_path): | |
print(f"Starting transcription of file: {file_path}") | |
temp_audio = None | |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): | |
print("Video file detected. Extracting audio...") | |
try: | |
video = mp.VideoFileClip(file_path) | |
temp_audio = generate_unique_filename(".wav") | |
video.audio.write_audiofile(temp_audio) | |
file_path = temp_audio | |
except Exception as e: | |
print(f"Error extracting audio from video: {e}") | |
raise | |
print(f"Does the file exist? {os.path.exists(file_path)}") | |
print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes") | |
output_file = generate_unique_filename(".json") | |
command = [ | |
"insanely-fast-whisper", | |
"--file-name", file_path, | |
"--device-id", "0", | |
"--model-name", "openai/whisper-large-v3", | |
"--task", "transcribe", | |
"--timestamp", "chunk", | |
"--transcript-path", output_file | |
] | |
print(f"Executing command: {' '.join(command)}") | |
try: | |
result = subprocess.run(command, check=True, capture_output=True, text=True) | |
print(f"Standard output: {result.stdout}") | |
print(f"Error output: {result.stderr}") | |
except subprocess.CalledProcessError as e: | |
print(f"Error running insanely-fast-whisper: {e}") | |
print(f"Standard output: {e.stdout}") | |
print(f"Error output: {e.stderr}") | |
raise | |
print(f"Reading transcription file: {output_file}") | |
try: | |
with open(output_file, "r") as f: | |
transcription = json.load(f) | |
except json.JSONDecodeError as e: | |
print(f"Error decoding JSON: {e}") | |
print(f"File content: {open(output_file, 'r').read()}") | |
raise | |
if "text" in transcription: | |
result = transcription["text"] | |
else: | |
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]) | |
print("Transcription completed.") | |
# Cleanup | |
cleanup_files(output_file) | |
if temp_audio: | |
cleanup_files(temp_audio) | |
return result | |
def process_video(radio, video, target_language, has_closeup_face): | |
try: | |
if target_language is None: | |
raise ValueError("Please select a Target Language for Dubbing.") | |
run_uuid = uuid.uuid4().hex[:6] | |
output_filename = f"{run_uuid}_resized_video.mp4" | |
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run() | |
video_path = output_filename | |
if not os.path.exists(video_path): | |
raise FileNotFoundError(f"Error: {video_path} does not exist.") | |
video_info = ffmpeg.probe(video_path) | |
video_duration = float(video_info['streams'][0]['duration']) | |
if video_duration > 60: | |
os.remove(video_path) | |
raise ValueError("Video duration exceeds 1 minute. Please upload a shorter video.") | |
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run() | |
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ") | |
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True) | |
print("Attempting to transcribe with Whisper...") | |
try: | |
whisper_text = transcribe_audio(f"{run_uuid}_output_audio_final.wav") | |
print(f"Transcription successful: {whisper_text}") | |
except Exception as e: | |
print(f"Error encountered during transcription: {str(e)}") | |
raise | |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'} | |
target_language_code = language_mapping[target_language] | |
translator = Translator() | |
translated_text = translator.translate(whisper_text, dest=target_language_code).text | |
print(translated_text) | |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2") | |
tts.to('cuda') | |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code) | |
pad_top = 0 | |
pad_bottom = 15 | |
pad_left = 0 | |
pad_right = 0 | |
rescaleFactor = 1 | |
video_path_fix = video_path | |
if has_closeup_face: | |
has_face = True | |
else: | |
has_face = check_for_faces(video_path) | |
if has_closeup_face: | |
try: | |
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'" | |
subprocess.run(cmd, shell=True, check=True) | |
except subprocess.CalledProcessError as e: | |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr): | |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.") | |
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4" | |
subprocess.run(cmd, shell=True) | |
else: | |
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4" | |
subprocess.run(cmd, shell=True) | |
if not os.path.exists(f"{run_uuid}_output_video.mp4"): | |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.") | |
output_video_path = f"{run_uuid}_output_video.mp4" | |
files_to_delete = [ | |
f"{run_uuid}_resized_video.mp4", | |
f"{run_uuid}_output_audio.wav", | |
f"{run_uuid}_output_audio_final.wav", | |
f"{run_uuid}_output_synth.wav" | |
] | |
for file in files_to_delete: | |
try: | |
os.remove(file) | |
except FileNotFoundError: | |
print(f"File {file} not found for deletion.") | |
return output_video_path | |
except Exception as e: | |
print(f"Error in process_video: {str(e)}") | |
return gr.update(value=None, visible=True), f"Error: {str(e)}" | |
def swap(radio): | |
if(radio == "Upload"): | |
return gr.update(source="upload") | |
else: | |
return gr.update(source="webcam") | |
video = gr.Video() | |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False) | |
iface = gr.Interface( | |
fn=process_video, | |
inputs=[ | |
radio, | |
video, | |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"), | |
gr.Checkbox( | |
label="Video has a close-up face. Use Wav2lip.", | |
value=False, | |
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.") | |
], | |
outputs=[gr.Video(), gr.Textbox(label="Error Message")], | |
live=False, | |
title="AI Video Dubbing", | |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""", | |
allow_flagging=False | |
) | |
with gr.Blocks() as demo: | |
iface.render() | |
radio.change(swap, inputs=[radio], outputs=video) | |
gr.Markdown(""" | |
**Note:** | |
- Video limit is 1 minute. It will dubbling all people using just one voice. | |
- Generation may take up to 5 minutes. | |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml | |
- The tool uses open-source models for all models. It's a alpha version. | |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality. | |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py. | |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected. | |
""") | |
print("Launching Gradio interface...") | |
demo.queue() | |
demo.launch() | |