Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.utils.audio import AudioProcessor | |
from TTS.vocoder.configs import UnivnetConfig | |
from TTS.vocoder.datasets.preprocess import load_wav_data | |
from TTS.vocoder.models.gan import GAN | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
config = UnivnetConfig( | |
batch_size=64, | |
eval_batch_size=16, | |
num_loader_workers=4, | |
num_eval_loader_workers=4, | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
seq_len=8192, | |
pad_short=2000, | |
use_noise_augment=True, | |
eval_split_size=10, | |
print_step=25, | |
print_eval=False, | |
mixed_precision=False, | |
lr_gen=1e-4, | |
lr_disc=1e-4, | |
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), | |
output_path=output_path, | |
) | |
# init audio processor | |
ap = AudioProcessor(**config.audio.to_dict()) | |
# load training samples | |
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) | |
# init model | |
model = GAN(config, ap) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
trainer.fit() | |