import os import gradio as gr import mdtex2html import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig # Initialize model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval() model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # Postprocess function def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess # Text parsing function def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text # Demo launching function def _launch_demo(args, model, tokenizer, config): def predict(_query, _chatbot, _task_history): print(f"User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"History: {_task_history}") _task_history.append((_query, full_response)) print(f"Qwen-Chat: {_parse_text(full_response)}") def regenerate(_chatbot, _task_history): if not _task_history: yield _chatbot return item = _task_history.pop(-1) _chatbot.pop(-1) yield from predict(item[0], _chatbot, _task_history) def reset_user_input(): return gr.update(value="") def reset_state(_chatbot, _task_history): _task_history.clear() _chatbot.clear() import gc gc.collect() torch.cuda.empty_cache() return _chatbot with gr.Blocks() as demo: gr.Markdown(""" ## Qwen-14B-Chat: A Large Language Model by Alibaba Cloud **Space created by [@artificialguybr](https://twitter.com/artificialguybr) based on QWEN Code. Thanks HF for GPU!** ### Performance Metrics: - **MMLU Accuracy**: - 0-shot: 64.6 - 5-shot: 66.5 - **HumanEval Pass@1**: 43.9 - **GSM8K Accuracy**: - 0-shot: 60.1 - 8-shot: 59.3 """) chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height", queue=True) query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) with gr.Row(): empty_btn = gr.Button("๐Ÿงน Clear History") submit_btn = gr.Button("๐Ÿš€ Submit") regen_btn = gr.Button("๐Ÿค”๏ธ Regenerate") submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True, queue=True) # Enable queue submit_btn.click(reset_user_input, [], [query]) empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True) regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True, queue=True) # Enable queue demo.queue(max_size=20) demo.launch(share=True) # Main execution if __name__ == "__main__": _launch_demo(None, model, tokenizer, model.generation_config)