from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch title = "🤖AI Radiology Simplification" description = "Simplify radiology reports using the Mistral 7b model." examples = [["INST/ Simplify this report:/n {report} /n Respone: [/INST]"]] tokenizer = AutoTokenizer.from_pretrained("areegtarek/mistral-7b-Radiology-Simplify") model = AutoModelForCausalLM.from_pretrained("areegtarek/mistral-7b-Radiology-Simplify") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ) # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=2048, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|end|>") # print('decoded_response-->>'+str(response)) response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list # print('response-->>'+str(response)) return response, history gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=["text", "state"], outputs=["chatbot", "state"], theme="finlaymacklon/boxy_violet", ).launch()