File size: 5,145 Bytes
8014209
431af92
8014209
d5d52b4
8014209
431af92
760bfde
54b4787
760bfde
 
8014209
 
 
 
 
 
 
 
760bfde
 
 
 
8014209
d5d52b4
8014209
 
 
 
760bfde
d5d52b4
8014209
 
760bfde
8014209
 
760bfde
8014209
760bfde
d5d52b4
8014209
760bfde
8014209
760bfde
8014209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760bfde
8014209
 
d5d52b4
760bfde
d5d52b4
 
 
760bfde
 
8014209
760bfde
 
 
8014209
760bfde
 
8014209
 
 
 
 
 
 
 
 
760bfde
 
 
8014209
 
 
 
 
 
760bfde
 
8014209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760bfde
 
8014209
 
bced9d4
 
d5d52b4
760bfde
 
8014209
 
760bfde
 
 
 
bced9d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import subprocess
from huggingface_hub import HfApi, upload_folder
import gradio as gr
import hf_utils

subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers.git", "diffs"])

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def on_token_change(token):
    model_names, error = hf_utils.get_my_model_names(token)
    if model_names:
        model_names.append("Other")

    return gr.update(visible=bool(model_names)), gr.update(choices=model_names, value=model_names[0] if model_names else None), gr.update(value=error_str(error))

def url_to_model_id(model_id_str):
    return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str
    
def get_ckpt_names(token, radio_model_names, input_model):
    
    model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names

    if token == "" or model_id == "":
        return error_str("Please enter both a token and a model name.", title="Invalid input"), gr.update(choices=[]), gr.update(visible=False)

    try:
        api = HfApi(token=token)
        ckpt_files = [f for f in api.list_repo_files(repo_id=model_id) if f.endswith(".ckpt")]
        
        if not ckpt_files:
            return error_str("No checkpoint files found in the model repo."), gr.update(choices=[]), gr.update(visible=False)
        
        return None, gr.update(choices=ckpt_files, value=ckpt_files[0], visible=True), gr.update(visible=True)
        
    except Exception as e:
        return error_str(e), gr.update(choices=[]), None

def convert_and_push(radio_model_names, input_model, ckpt_name, token):
    
    model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names

    try:
        model_id = url_to_model_id(model_id)

        # 1. Download the checkpoint file
        ckpt_path, revision = hf_utils.download_file(repo_id=model_id, filename=ckpt_name, token=token)

        # 2. Run the conversion script
        subprocess.run(
            [
                "python3",
                "./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py",
                "--checkpoint_path",
                ckpt_path,
                "--dump_path" ,
                model_id,
            ]
        )

        # 3. Push to the model repo
        upload_folder(
            folder_path=model_id,
            repo_id=model_id,
            token=token,
            create_pr=True,
        )

        # # 4. Delete the downloaded checkpoint file, yaml files, and the converted model folder
        hf_utils.delete_file(revision)
        subprocess.run(["rm", "-rf", model_id.split('/')[0]])
        import glob
        for f in glob.glob("*.yaml*"):
            subprocess.run(["rm", "-rf", f])

        return "Success"
    
    except Exception as e:
        return error_str(e)

    
with gr.Blocks() as demo:

    with gr.Row():

        with gr.Column(scale=11):
            with gr.Column():
                gr.Markdown("## 1. Load model info")
                input_token = gr.Textbox(
                    max_lines=1,
                    label="Enter your Hugging Face token",
                    placeholder="hf_...",
                )
                gr.Markdown("You can get a token [here](https://huggingface.co/settings/tokens).")
                with gr.Group(visible=False) as group_model:
                    radio_model_names = gr.Radio(label="Choose a model")
                    input_model = gr.Textbox(
                        max_lines=1,
                        label="Model name or URL",
                        placeholder="username/model_name",
                        visible=False,
                    )

            btn_get_ckpts = gr.Button("Load")

        with gr.Column(scale=10):
            with gr.Column(visible=False) as group_convert:
                gr.Markdown("## 2. Convert to Diffusers🧨")
                radio_ckpts = gr.Radio(label="Choose the checkpoint to convert", visible=False)
                gr.Markdown("Conversion may take a few minutes.")
                btn_convert = gr.Button("Convert & Push")

    error_output = gr.Markdown(label="Output")

    input_token.change(
        fn=on_token_change,
        inputs=input_token,
        outputs=[group_model, radio_model_names, error_output],
        queue=False,
        scroll_to_output=True)
    
    radio_model_names.change(
        lambda x: gr.update(visible=x == "Other"),
        inputs=radio_model_names,
        outputs=input_model,
        queue=False,
        scroll_to_output=True)
    
    btn_get_ckpts.click(
        fn=get_ckpt_names,
        inputs=[input_token, radio_model_names, input_model],
        outputs=[error_output, radio_ckpts, group_convert],
        scroll_to_output=True,
        queue=False
    )

    btn_convert.click(
        fn=convert_and_push,
        inputs=[radio_model_names, input_model, radio_ckpts, input_token],
        outputs=error_output,
        scroll_to_output=True
    )

demo.launch(debug=True, share=True)