import os import gc import time import json import math import collections from datetime import datetime from typing import Optional, List, Dict, Tuple, Callable, Any, Union import torch import numpy as np from transformers import ( is_datasets_available, is_torch_tpu_available, ) from transformers.trainer_utils import ( PredictionOutput, EvalPrediction, EvalLoopOutput, denumpify_detensorize, speed_metrics, ) from transformers.utils import logging from transformers.debug_utils import DebugOption if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met from transformers import Trainer logger = logging.get_logger(__name__) class ToMixin: def _optimizer_to(self, device: str = "cpu"): # https://github.com/pytorch/pytorch/issues/8741 for param in self.optimizer.state.values(): # Not sure there are any global tensors in the state dict if isinstance(param, torch.Tensor): param.data = param.data.to(device) if param._grad is not None: param._grad.data = param._grad.data.to(device) elif isinstance(param, dict): for subparam in param.values(): if isinstance(subparam, torch.Tensor): subparam.data = subparam.data.to(device) if subparam._grad is not None: subparam._grad.data = subparam._grad.data.to( device) def _scheduler_to(self, device: str = "cpu"): # https://github.com/pytorch/pytorch/issues/8741 for param in self.lr_scheduler.__dict__.values(): if isinstance(param, torch.Tensor): param.data = param.data.to(device) if param._grad is not None: param._grad.data = param._grad.data.to(device) class BaseReader(Trainer, ToMixin): name: str = None def __init__( self, *args, data_args = {}, eval_examples: datasets.Dataset = None, **kwargs ): super().__init__(*args, **kwargs) self.data_args = data_args self.eval_examples = eval_examples def free_memory(self): self.model.to("cpu") self._optimizer_to("cpu") self._scheduler_to("cpu") torch.cuda.empty_cache() gc.collect() def postprocess( self, output: EvalLoopOutput, ) -> Union[Any, EvalPrediction]: return output def evaluate( self, eval_dataset: Optional[datasets.Dataset] = None, eval_examples: Optional[datasets.Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: # memory metrics - must set up as early as possible self._memory_tracker.start() eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() eval_examples = self.eval_examples if eval_examples is None else eval_examples compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( eval_dataloader, description="Evaluation", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) finally: self.compute_metrics = compute_metrics if isinstance(eval_dataset, datasets.Dataset): eval_dataset.set_format( type=eval_dataset.format["type"], columns=list(eval_dataset.features.keys()), ) eval_preds = self.postprocess(output, eval_examples, eval_dataset, mode="evaluate") metrics = {} if self.compute_metrics is not None: metrics = self.compute_metrics(eval_preds) # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) total_batch_size = self.args.eval_batch_size * self.args.world_size metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self.log(metrics) # Log and save evaluation results filename = "eval_results.txt" eval_result_file = self.name + "_" + filename if self.name else filename with open(os.path.join(self.args.output_dir, eval_result_file), "a") as writer: logger.info("***** Eval results *****") writer.write("***** Eval results *****\n") writer.write(f"{datetime.now()}") for key in sorted(metrics.keys()): logger.info(" %s = %s", key, str(metrics[key])) writer.write("%s = %s\n" % (key, str(metrics[key]))) writer.write("\n") if DebugOption.TPU_METRICS_DEBUG in self.args.debug: # tpu-comment: PyTorch/XLA에 대한 Logging debug metrics (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate( self.args, self.state, self.control, metrics ) self._memory_tracker.stop_and_update_metrics(metrics) return metrics def predict( self, test_dataset: datasets.Dataset, test_examples: datasets.Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test", mode: bool = "predict", ) -> PredictionOutput: # memory metrics - must set up as early as possible self._memory_tracker.start() test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) finally: self.compute_metrics = compute_metrics if isinstance(test_dataset, datasets.Dataset): test_dataset.set_format( type=test_dataset.format["type"], columns=list(test_dataset.features.keys()), ) predictions = self.postprocess(output, test_examples, test_dataset, mode=mode) self._memory_tracker.stop_and_update_metrics(output.metrics) return predictions