Spaces:
Runtime error
Runtime error
File size: 27,879 Bytes
daeb223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import os
import time
import json
import math
import copy
import collections
from typing import Optional, List, Dict, Tuple, Callable, Any, Union, NewType
import numpy as np
from tqdm import tqdm
import datasets
from transformers import AutoTokenizer
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction
from .args import (
HfArgumentParser,
RetroArguments,
TrainingArguments,
)
from .base import BaseReader
from . import constants as C
from .preprocess import (
get_sketch_features,
get_intensive_features
)
from .metrics import (
compute_classification_metric,
compute_squad_v2
)
DataClassType = NewType("DataClassType", Any)
logger = logging.get_logger(__name__)
class SketchReader(BaseReader):
name: str = "sketch"
def postprocess(
self,
output: Union[np.ndarray, EvalLoopOutput],
eval_examples: datasets.Dataset,
eval_dataset: datasets.Dataset,
mode: str = "evaluate",
) -> Union[EvalPrediction, Dict[str, float]]:
# External Front Verification (E-FV)
if isinstance(output, EvalLoopOutput):
logits = output.predictions
else:
logits = output
example_id_to_index = {k: i for i, k in enumerate(eval_examples[C.ID_COLUMN_NAME])}
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(eval_dataset):
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
count_map = {k: len(v) for k, v in features_per_example.items()}
logits_ans = np.zeros(len(count_map))
logits_na = np.zeros(len(count_map))
for example_index, example in enumerate(tqdm(eval_examples)):
feature_indices = features_per_example[example_index]
n_strides = count_map[example_index]
logits_ans[example_index] += logits[example_index, 0] / n_strides
logits_na[example_index] += logits[example_index, 1] / n_strides
# Calculate E-FV score
score_ext = logits_ans - logits_na
# Save external front verification score
final_map = dict(zip(eval_examples[C.ID_COLUMN_NAME], score_ext.tolist()))
with open(os.path.join(self.args.output_dir, C.SCORE_EXT_FILE_NAME), "w") as writer:
writer.write(json.dumps(final_map, indent=4) + "\n")
if mode == "evaluate":
return EvalPrediction(
predictions=logits, label_ids=output.label_ids,
)
else:
return final_map
class IntensiveReader(BaseReader):
name: str = "intensive"
def postprocess(
self,
output: EvalLoopOutput,
eval_examples: datasets.Dataset,
eval_dataset: datasets.Dataset,
log_level: int = logging.WARNING,
mode: str = "evaluate",
) -> Union[List[Dict[str, Any]], EvalPrediction]:
# Internal Front Verification (I-FV)
# Verification is already done inside the model
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions, nbest_json, scores_diff_json = self.compute_predictions(
eval_examples,
eval_dataset,
output.predictions,
version_2_with_negative=self.data_args.version_2_with_negative,
n_best_size=self.data_args.n_best_size,
max_answer_length=self.data_args.max_answer_length,
null_score_diff_threshold=self.data_args.null_score_diff_threshold,
output_dir=self.args.output_dir,
log_level=log_level,
n_tops=(self.data_args.start_n_top, self.data_args.end_n_top),
)
if mode == "retro_inference":
return nbest_json, scores_diff_json
# Format the result to the format the metric expects.
if self.data_args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]}
for k, v in predictions.items()
]
else:
formatted_predictions = [
{"id": k, "prediction_text": v}
for k, v in predictions.items()
]
if mode == "predict":
return formatted_predictions
else:
references = [
{"id": ex[C.ID_COLUMN_NAME], "answers": ex[C.ANSWER_COLUMN_NAME]}
for ex in eval_examples
]
return EvalPrediction(
predictions=formatted_predictions, label_ids=references
)
def compute_predictions(
self,
examples: datasets.Dataset,
features: datasets.Dataset,
predictions: Tuple[np.ndarray, np.ndarray],
version_2_with_negative: bool = False,
n_best_size: int = 20,
max_answer_length: int = 30,
null_score_diff_threshold: float = 0.0,
output_dir: Optional[str] = None,
log_level: Optional[int] = logging.WARNING,
n_tops: Tuple[int, int] = (-1, -1),
use_choice_logits: bool = False,
):
# Threshold-based Answerable Verification (TAV)
if len(predictions) not in [2, 3]:
raise ValueError("`predictions` should be a tuple with two or three elements "
"(start_logits, end_logits, choice_logits).")
all_start_logits, all_end_logits = predictions[:2]
all_choice_logits = None
if len(predictions) == 3:
all_choice_logits = predictions[-1]
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples[C.ID_COLUMN_NAME])}
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(features):
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
# Logging.
logger.setLevel(log_level)
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
# Let's loop over all the examples!
for example_index, example in enumerate(tqdm(examples)):
# Those are the indices of the features associated to the current example.
feature_indices = features_per_example[example_index]
min_null_prediction = None
prelim_predictions = []
# Looping through all the features associated to the current example.
for feature_index in feature_indices:
# We grab the predictions of the model for this feature.
start_logits = all_start_logits[feature_index]
end_logits = all_end_logits[feature_index]
# score_null = s1 + e1
feature_null_score = start_logits[0] + end_logits[0]
if all_choice_logits is not None:
choice_logits = all_choice_logits[feature_index]
if use_choice_logits:
feature_null_score = choice_logits[1]
# This is what will allow us to map some the positions
# in our logits to span of texts in the original context.
offset_mapping = features[feature_index]["offset_mapping"]
# Optional `token_is_max_context`,
# if provided we will remove answers that do not have the maximum context
# available in the current feature.
token_is_max_context = features[feature_index].get("token_is_max_context", None)
# Update minimum null prediction.
if (
min_null_prediction is None or
min_null_prediction["score"] > feature_null_score
):
min_null_prediction = {
"offsets": (0, 0),
"score": feature_null_score,
"start_logit": start_logits[0],
"end_logit": end_logits[0],
}
# Go through all possibilities for the {top k} greater start and end logits
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Don't consider out-of-scope answers!
# either because the indices are out of bounds
# or correspond to part of the input_ids that are note in the context.
if (
start_index >= len(offset_mapping)
or end_index >= len(offset_mapping)
or not offset_mapping[start_index]
or not offset_mapping[end_index]
):
continue
# Don't consider answers with a length negative or > max_answer_length.
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
continue
# Don't consider answer that don't have the maximum context available
# (if such information is provided).
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
continue
prelim_predictions.append(
{
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
"score": start_logits[start_index] + end_logits[end_index],
"start_logit": start_logits[start_index],
"end_logit": end_logits[end_index],
}
)
if version_2_with_negative:
# Add the minimum null prediction
prelim_predictions.append(min_null_prediction)
null_score = min_null_prediction["score"]
# Only keep the best `n_best_size` predictions
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
# Add back the minimum null prediction if it was removed because of its low score.
if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
predictions.append(min_null_prediction)
# Use the offsets to gather the answer text in the original context.
context = example["context"]
for pred in predictions:
offsets = pred.pop("offsets")
pred["text"] = context[offsets[0] : offsets[1]]
# In the very rare edge case we have not a single non-null prediction,
# we create a fake prediction to avoid failure.
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
predictions.insert(0, {"text": "", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0,})
# Compute the softmax of all scores
# (we do it with numpy to stay independent from torch/tf) in this file,
# using the LogSum trick).
scores = np.array([pred.pop("score") for pred in predictions])
exp_scores = np.exp(scores - np.max(scores))
probs = exp_scores / exp_scores.sum()
# Include the probabilities in our predictions.
for prob, pred in zip(probs, predictions):
pred["probability"] = prob
# Pick the best prediction. If the null answer is not possible, this is easy.
if not version_2_with_negative:
all_predictions[example[C.ID_COLUMN_NAME]] = predictions[0]["text"]
else:
# Otherwise we first need to find the best non-empty prediction.
i = 0
try:
while predictions[i]["text"] == "":
i += 1
except:
i = 0
best_non_null_pred = predictions[i]
# Then we compare to the null prediction using the threshold.
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
scores_diff_json[example[C.ID_COLUMN_NAME]] = float(score_diff) # To be JSON-serializable.
if score_diff > null_score_diff_threshold:
all_predictions[example[C.ID_COLUMN_NAME]] = ""
else:
all_predictions[example[C.ID_COLUMN_NAME]] = best_non_null_pred["text"]
# Make `predictions` JSON-serializable by casting np.float back to float.
all_nbest_json[example[C.ID_COLUMN_NAME]] = [
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
for pred in predictions
]
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(output_dir, C.INTENSIVE_PRED_FILE_NAME)
nbest_file = os.path.join(output_dir, C.NBEST_PRED_FILE_NAME)
if version_2_with_negative:
null_odds_file = os.path.join(output_dir, C.SCORE_DIFF_FILE_NAME)
logger.info(f"Saving predictions to {prediction_file}.")
with open(prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
logger.info(f"Saving nbest_preds to {nbest_file}.")
with open(nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
logger.info(f"Saving null_odds to {null_odds_file}.")
with open(null_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions, all_nbest_json, scores_diff_json
class RearVerifier:
def __init__(
self,
beta1: int = 1,
beta2: int = 1,
best_cof: int = 1,
thresh: float = 0.0,
):
self.beta1 = beta1
self.beta2 = beta2
self.best_cof = best_cof
self.thresh = thresh
def __call__(
self,
score_ext: Dict[str, float],
score_diff: Dict[str, float],
nbest_preds: Dict[str, Dict[int, Dict[str, float]]]
):
all_scores = collections.OrderedDict()
assert score_ext.keys() == score_diff.keys()
for key in score_ext.keys():
if key not in all_scores:
all_scores[key] = []
all_scores[key].extend(
[self.beta1 * score_ext[key],
self.beta2 * score_diff[key]]
)
output_scores = {}
for key, scores in all_scores.items():
mean_score = sum(scores) / float(len(scores))
output_scores[key] = mean_score
all_nbest = collections.OrderedDict()
for key, entries in nbest_preds.items():
if key not in all_nbest:
all_nbest[key] = collections.defaultdict(float)
for entry in entries:
prob = self.best_cof * entry["probability"]
all_nbest[key][entry["text"]] += prob
output_predictions = {}
for key, entry_map in all_nbest.items():
sorted_texts = sorted(
entry_map.keys(), key=lambda x: entry_map[x], reverse=True
)
best_text = sorted_texts[0]
output_predictions[key] = best_text
for qid in output_predictions.keys():
if output_scores[qid] > self.thresh:
output_predictions[qid] = ""
return output_predictions, output_scores
class RetroReader:
def __init__(
self,
args,
sketch_reader: SketchReader,
intensive_reader: IntensiveReader,
rear_verifier: RearVerifier,
prep_fn: Tuple[Callable, Callable],
):
self.args = args
# Set submodules
self.sketch_reader = sketch_reader
self.intensive_reader = intensive_reader
self.rear_verifier = rear_verifier
# Set prep function for inference
self.sketch_prep_fn, self.intensive_prep_fn = prep_fn
@classmethod
def load(
cls,
train_examples=None,
sketch_train_dataset=None,
intensive_train_dataset=None,
eval_examples=None,
sketch_eval_dataset=None,
intensive_eval_dataset=None,
config_file: str = C.DEFAULT_CONFIG_FILE,
):
# Get arguments from yaml files
parser = HfArgumentParser([RetroArguments, TrainingArguments])
retro_args, training_args = parser.parse_yaml_file(yaml_file=config_file)
if training_args.run_name is not None and "," in training_args.run_name:
sketch_run_name, intensive_run_name = training_args.run_name.split(",")
else:
sketch_run_name, intensive_run_name = None, None
if training_args.metric_for_best_model is not None and "," in training_args.metric_for_best_model:
sketch_best_metric, intensive_best_metric = training_args.metric_for_best_model.split(",")
else:
sketch_best_metric, intensive_best_metric = None, None
sketch_training_args = copy.deepcopy(training_args)
intensive_training_args = training_args
sketch_tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=retro_args.sketch_tokenizer_name,
use_auth_token=retro_args.use_auth_token,
revision=retro_args.sketch_revision,
)
# If `train_examples` is feeded, perform preprocessing
if train_examples is not None and sketch_train_dataset is None:
sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "train", retro_args)
sketch_train_dataset = train_examples.map(
sketch_prep_fn,
batched=is_batched,
remove_columns=train_examples.column_names,
num_proc=retro_args.preprocessing_num_workers,
load_from_cache_file=not retro_args.overwrite_cache,
)
# If `eval_examples` is feeded, perform preprocessing
if eval_examples is not None and sketch_eval_dataset is None:
sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "eval", retro_args)
sketch_eval_dataset = eval_examples.map(
sketch_prep_fn,
batched=is_batched,
remove_columns=eval_examples.column_names,
num_proc=retro_args.preprocessing_num_workers,
load_from_cache_file=not retro_args.overwrite_cache,
)
# Get preprocessing function for inference
sketch_prep_fn, _ = get_sketch_features(sketch_tokenizer, "test", retro_args)
# Get model for sketch reader
sketch_model_cls = retro_args.sketch_model_cls
sketch_model = sketch_model_cls.from_pretrained(
pretrained_model_name_or_path=retro_args.sketch_model_name,
use_auth_token=retro_args.use_auth_token,
revision=retro_args.sketch_revision,
)
# Get sketch reader
sketch_training_args.run_name = sketch_run_name
sketch_training_args.output_dir += "/sketch"
sketch_training_args.metric_for_best_model = sketch_best_metric
sketch_reader = SketchReader(
model=sketch_model,
args=sketch_training_args,
train_dataset=sketch_train_dataset,
eval_dataset=sketch_eval_dataset,
eval_examples=eval_examples,
data_args=retro_args,
tokenizer=sketch_tokenizer,
compute_metrics=compute_classification_metric,
)
intensive_tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=retro_args.intensive_tokenizer_name,
use_auth_token=retro_args.use_auth_token,
revision=retro_args.intensive_revision,
)
# If `train_examples` is feeded, perform preprocessing
if train_examples is not None and intensive_train_dataset is None:
intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "train", retro_args)
intensive_train_dataset = train_examples.map(
intensive_prep_fn,
batched=is_batched,
remove_columns=train_examples.column_names,
num_proc=retro_args.preprocessing_num_workers,
load_from_cache_file=not retro_args.overwrite_cache,
)
# If `eval_examples` is feeded, perform preprocessing
if eval_examples is not None and intensive_eval_dataset is None:
intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "eval", retro_args)
intensive_eval_dataset = eval_examples.map(
intensive_prep_fn,
batched=is_batched,
remove_columns=eval_examples.column_names,
num_proc=retro_args.preprocessing_num_workers,
load_from_cache_file=not retro_args.overwrite_cache,
)
# Get preprocessing function for inference
intensive_prep_fn, _ = get_intensive_features(intensive_tokenizer, "test", retro_args)
# Get model for intensive reader
intensive_model_cls = retro_args.intensive_model_cls
intensive_model = intensive_model_cls.from_pretrained(
pretrained_model_name_or_path=retro_args.intensive_model_name,
use_auth_token=retro_args.use_auth_token,
revision=retro_args.intensive_revision,
)
# Get intensive reader
intensive_training_args.run_name = intensive_run_name
intensive_training_args.output_dir += "/intensive"
intensive_training_args.metric_for_best_model = intensive_best_metric
intensive_reader = IntensiveReader(
model=intensive_model,
args=intensive_training_args,
train_dataset=intensive_train_dataset,
eval_dataset=intensive_eval_dataset,
eval_examples=eval_examples,
data_args=retro_args,
tokenizer=intensive_tokenizer,
compute_metrics=compute_squad_v2,
)
# Get rear verifier
rear_verifier = RearVerifier(
beta1=retro_args.beta1,
beta2=retro_args.beta2,
best_cof=retro_args.best_cof,
thresh=retro_args.rear_threshold,
)
return cls(
args=retro_args,
sketch_reader=sketch_reader,
intensive_reader=intensive_reader,
rear_verifier=rear_verifier,
prep_fn=(sketch_prep_fn, intensive_prep_fn),
)
def __call__(
self,
query: str,
context: Union[str, List[str]],
return_submodule_outputs: bool = False,
) -> Tuple[Any]:
if isinstance(context, list):
context = " ".join(context)
predict_examples = datasets.Dataset.from_dict({
"example_id": ["0"],
C.ID_COLUMN_NAME: ["id-01"],
C.QUESTION_COLUMN_NAME: [query],
C.CONTEXT_COLUMN_NAME: [context]
})
return self.inference(predict_examples)
def train(self, module: str = "all"):
def wandb_finish(module):
for callback in module.callback_handler.callbacks:
if "wandb" in str(type(callback)).lower():
callback._wandb.finish()
callback._initialized = False
# Train sketch reader
if module.lower() in ["all", "sketch"]:
self.sketch_reader.train()
self.sketch_reader.save_model()
self.sketch_reader.save_state()
self.sketch_reader.free_memory()
wandb_finish(self.sketch_reader)
# Train intensive reader
if module.lower() in ["all", "intensive"]:
self.intensive_reader.train()
self.intensive_reader.save_model()
self.intensive_reader.save_state()
self.intensive_reader.free_memory()
wandb_finish(self.intensive_reader)
def inference(self, predict_examples: datasets.Dataset) -> Tuple[Any]:
if "example_id" not in predict_examples.column_names:
test_dataset = predict_examples.map(
lambda _, i: {"example_id": str(i)},
with_indices=True,
)
sketch_features = predict_examples.map(
self.sketch_prep_fn,
batched=True,
remove_columns=predict_examples.column_names,
)
intensive_features = predict_examples.map(
self.intensive_prep_fn,
batched=True,
remove_columns=predict_examples.column_names,
)
# self.sketch_reader.to(self.sketch_reader.args.device)
score_ext = self.sketch_reader.predict(sketch_features, predict_examples)
# self.sketch_reader.to("cpu")
# self.intensive_reader.to(self.intensive_reader.args.device)
nbest_preds, score_diff = self.intensive_reader.predict(
intensive_features, predict_examples, mode="retro_inference")
# self.intensive_reader.to("cpu")
predictions, scores = self.rear_verifier(score_ext, score_diff, nbest_preds)
outputs = (predictions, scores)
# if self.return_submodule_outputs:
# outputs += (score_ext, nbest_preds, score_diff)
return outputs
@property
def null_score_diff_threshold(self):
return self.args.null_score_diff_threshold
@null_score_diff_threshold.setter
def null_score_diff_threshold(self, val):
self.args.null_score_diff_threshold = val
@property
def n_best_size(self):
return self.args.n_best_size
@n_best_size.setter
def n_best_size(self, val):
self.args.n_best_size = val
@property
def beta1(self):
return self.rear_verifier.beta1
@beta1.setter
def beta1(self, val):
self.rear_verifier.beta1 = val
@property
def beta2(self):
return self.rear_verifier.beta2
@beta2.setter
def beta2(self, val):
self.rear_verifier.beta2 = val
@property
def best_cof(self):
return self.rear_verifier.best_cof
@best_cof.setter
def best_cof(self, val):
self.rear_verifier.best_cof = val
@property
def rear_threshold(self):
return self.rear_verifier.thresh
@rear_threshold.setter
def rear_threshold(self, val):
self.rear_verifier.thresh = val
|