File size: 4,250 Bytes
daeb223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers import (
    BertForSequenceClassification as SeqClassification,
    BertPreTrainedModel,
    BertModel,
    BertConfig,
)

from .modeling_outputs import (
    QuestionAnsweringModelOutput,
    QuestionAnsweringNaModelOutput,
)


class BertForSequenceClassification(SeqClassification):
    model_type = "bert"


class BertForQuestionAnsweringAVPool(BertPreTrainedModel):    
    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    model_type = "bert"
    
    def __init__(self, config):
        super(BertForQuestionAnsweringAVPool, self).__init__(config)
        self.num_labels = config.num_labels
        
        self.bert  = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
        self.has_ans = nn.Sequential(
            nn.Dropout(p=config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, 2)
        )
        
        # Initialize weights and apply final processing
        self.post_init()
        
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        is_impossibles=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        outputs = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        
        sequence_output = outputs[0]
        
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
        
        first_word = sequence_output[:, 0, :]
        
        has_logits = self.has_ans(first_word)
        
        total_loss = None
        if (
            start_positions is not None and 
            end_positions is not None and 
            is_impossibles is not None
        ):
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            if len(is_impossibles.size()) > 1:
                is_impossibles = is_impossibles.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)
            is_impossibles.clamp_(0, ignored_index)
            
            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            span_loss = start_loss + end_loss
            
            # Internal Front Verification (I-FV)
            # alpha1 == 1.0, alpha2 == 0.5
            choice_loss = loss_fct(has_logits, is_impossibles.long())
            total_loss = 1.0 * span_loss + 0.5 * choice_loss
        
        if not return_dict:
            output = (
                start_logits,
                end_logits,
                has_logits,
            ) + outputs[2:] # hidden_states, attentions
            return ((total_loss,) + output) if total_loss is not None else output
        
        return QuestionAnsweringNaModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            has_logits=has_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )