from audiocraft.models import MusicGen import streamlit as st import os import torch import torchaudio from io import BytesIO st.set_page_config( page_icon=":musical_note:", page_title="Music Gen" ) with open("styles.css") as f: st.markdown(f"", unsafe_allow_html=True) @st.cache_resource def load_model(): model = MusicGen.get_pretrained("facebook/musicgen-small") return model def generate_music_tensors(description, duration: int): print("Description:", description) print("Duration:", duration) model = load_model() model.set_generation_params( use_sampling=True, top_k=250, duration=duration ) output = model.generate( descriptions=[description], progress=True, return_tokens=True ) return output[0] def save_audio_to_bytes(samples: torch.Tensor): sample_rate = 32000 assert samples.dim() == 2 or samples.dim() == 3 samples = samples.detach().cpu() if samples.dim() == 2: samples = samples[None, ...] # Add batch dimension if missing audio_buffer = BytesIO() torchaudio.save(audio_buffer, samples[0], sample_rate=sample_rate, format="wav") audio_buffer.seek(0) # Move to the start of the buffer return audio_buffer video_background = """
""" st.markdown(video_background, unsafe_allow_html=True) def main(): st.title("Your Music") with st.expander("See Explanation"): st.write("This app uses Meta's Audiocraft Music Gen model to generate audio based on your description.") text_area = st.text_area("Enter description") time_slider = st.slider("Select time duration (seconds)", 2, 20, 5) if text_area and time_slider: st.json( { "Description": text_area, "Selected duration": time_slider } ) st.write("Generating your music... please wait.") def main(): st.title("Your Music") with st.expander("See Explanation"): st.write("This app uses Meta's Audiocraft Music Gen model to generate audio based on your description.") text_area = st.text_area("Enter description") time_slider = st.slider("Select time duration (seconds)", 2, 20, 5) if text_area and time_slider: st.json( { "Description": text_area, "Selected duration": time_slider } ) st.write("We will be back with your music... please enjoy doing the rest of your tasks while we come back in some time :)") st.subheader("Generated Music") music_tensors = generate_music_tensors(text_area, time_slider) # Convert audio to bytes for playback and download audio_buffer = save_audio_to_bytes(music_tensors) # Play audio st.audio(audio_buffer, format="audio/wav") # Download button for audio st.download_button( label="Download Audio", data=audio_buffer, file_name="generated_music.wav", mime="audio/wav" ) if __name__ == "__main__": main()