annapurnapadmaprema-ji
commited on
Commit
•
0bb0ef0
1
Parent(s):
fe49032
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import torch
|
|
5 |
import torchaudio
|
6 |
import numpy as np
|
7 |
import base64
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
@@ -16,9 +17,12 @@ def generate_music_tensors(description, duration: int):
|
|
16 |
print("Duration:", duration)
|
17 |
model = load_model()
|
18 |
|
|
|
19 |
model.set_generation_params(
|
20 |
use_sampling=True,
|
21 |
-
top_k=
|
|
|
|
|
22 |
duration=duration
|
23 |
)
|
24 |
|
@@ -29,27 +33,19 @@ def generate_music_tensors(description, duration: int):
|
|
29 |
)
|
30 |
return output[0]
|
31 |
|
32 |
-
def
|
33 |
-
sample_rate = 32000
|
34 |
-
save_path = "audio_output/"
|
35 |
-
os.makedirs(save_path, exist_ok=True) # ensure directory exists
|
36 |
-
|
37 |
assert samples.dim() == 2 or samples.dim() == 3
|
38 |
samples = samples.detach().cpu()
|
39 |
|
40 |
if samples.dim() == 2:
|
41 |
samples = samples[None, ...]
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
with open(bin_file, 'rb') as f:
|
49 |
-
data = f.read()
|
50 |
-
bin_str = base64.b64encode(data).decode()
|
51 |
-
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{file_label}">Download {file_label} from here</a>'
|
52 |
-
return href
|
53 |
|
54 |
st.set_page_config(
|
55 |
page_icon=":musical_note:",
|
@@ -60,25 +56,33 @@ def main():
|
|
60 |
st.title("Your Music")
|
61 |
|
62 |
with st.expander("See Explanation"):
|
63 |
-
st.write("App is developed
|
64 |
-
|
65 |
text_area = st.text_area("Enter description")
|
66 |
-
time_slider = st.slider("Select time duration(
|
67 |
-
|
68 |
if text_area and time_slider:
|
69 |
st.json(
|
70 |
{
|
71 |
"Description": text_area,
|
72 |
"Selected duration": time_slider
|
73 |
}
|
|
|
74 |
)
|
75 |
st.subheader("Generated Music")
|
76 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
-
main()
|
|
|
5 |
import torchaudio
|
6 |
import numpy as np
|
7 |
import base64
|
8 |
+
from io import BytesIO
|
9 |
|
10 |
@st.cache_resource
|
11 |
def load_model():
|
|
|
17 |
print("Duration:", duration)
|
18 |
model = load_model()
|
19 |
|
20 |
+
# Experiment with different generation parameters for improved quality
|
21 |
model.set_generation_params(
|
22 |
use_sampling=True,
|
23 |
+
top_k=300, # Increase top_k for more diversity
|
24 |
+
top_p=0.85, # Probability threshold for token sampling
|
25 |
+
temperature=0.8, # Control randomness; lower values = more focused output
|
26 |
duration=duration
|
27 |
)
|
28 |
|
|
|
33 |
)
|
34 |
return output[0]
|
35 |
|
36 |
+
def save_audio_to_bytes(samples: torch.Tensor):
|
37 |
+
sample_rate = 32000
|
|
|
|
|
|
|
38 |
assert samples.dim() == 2 or samples.dim() == 3
|
39 |
samples = samples.detach().cpu()
|
40 |
|
41 |
if samples.dim() == 2:
|
42 |
samples = samples[None, ...]
|
43 |
+
|
44 |
+
# Save audio to a byte buffer instead of file for easier download
|
45 |
+
byte_io = BytesIO()
|
46 |
+
torchaudio.save(byte_io, samples, sample_rate=sample_rate, format="wav")
|
47 |
+
byte_io.seek(0) # Reset buffer position to the beginning for reading
|
48 |
+
return byte_io
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
st.set_page_config(
|
51 |
page_icon=":musical_note:",
|
|
|
56 |
st.title("Your Music")
|
57 |
|
58 |
with st.expander("See Explanation"):
|
59 |
+
st.write("App is developed using Meta's Audiocraft Music Gen model. Write a description and we will generate audio.")
|
60 |
+
|
61 |
text_area = st.text_area("Enter description")
|
62 |
+
time_slider = st.slider("Select time duration (seconds)", 2, 20, 10)
|
63 |
+
|
64 |
if text_area and time_slider:
|
65 |
st.json(
|
66 |
{
|
67 |
"Description": text_area,
|
68 |
"Selected duration": time_slider
|
69 |
}
|
70 |
+
st.write("We will back with your music....please enjoy doing the rest of your tasks while we come back in some time :)")
|
71 |
)
|
72 |
st.subheader("Generated Music")
|
73 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
74 |
+
|
75 |
+
# Save to byte buffer for download
|
76 |
+
audio_file = save_audio_to_bytes(music_tensors)
|
77 |
+
|
78 |
+
# Play and download audio
|
79 |
+
st.audio(audio_file, format="audio/wav")
|
80 |
+
st.download_button(
|
81 |
+
label="Download Audio",
|
82 |
+
data=audio_file,
|
83 |
+
file_name="generated_music.wav",
|
84 |
+
mime="audio/wav"
|
85 |
+
)
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
+
main()
|