|
|
|
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from audiocraft.modules.codebooks_patterns import (
|
|
DelayedPatternProvider,
|
|
ParallelPatternProvider,
|
|
Pattern,
|
|
UnrolledPatternProvider,
|
|
)
|
|
|
|
|
|
class TestParallelPatternProvider:
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100])
|
|
def test_get_pattern(self, n_q: int, timesteps: int):
|
|
provider = ParallelPatternProvider(n_q)
|
|
pattern = provider.get_pattern(timesteps)
|
|
|
|
assert len(pattern.layout) == timesteps + 1
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [8, 16, 100])
|
|
def test_pattern_content(self, n_q: int, timesteps: int):
|
|
provider = ParallelPatternProvider(n_q)
|
|
pattern = provider.get_pattern(timesteps)
|
|
for s, v in enumerate(pattern.layout):
|
|
for i, code in enumerate(v):
|
|
assert i == code.q
|
|
assert code.t == s - 1
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [8, 16, 100])
|
|
def test_pattern_max_delay(self, n_q: int, timesteps: int):
|
|
provider = ParallelPatternProvider(n_q)
|
|
pattern = provider.get_pattern(timesteps)
|
|
assert pattern.max_delay == 0
|
|
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay
|
|
|
|
|
|
class TestDelayedPatternProvider:
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100])
|
|
def test_get_pattern(self, n_q: int, timesteps: int):
|
|
delays = [
|
|
list(range(n_q)),
|
|
[0] + [1] * (n_q - 1),
|
|
[0] + [4] * (n_q - 1),
|
|
]
|
|
for delay in delays:
|
|
provider = DelayedPatternProvider(n_q, delay)
|
|
pattern = provider.get_pattern(timesteps)
|
|
|
|
assert len(pattern.layout) == timesteps + max(delay) + 1
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [8, 16, 100])
|
|
def test_pattern_content(self, n_q: int, timesteps: int):
|
|
provider = DelayedPatternProvider(n_q)
|
|
pattern = provider.get_pattern(timesteps)
|
|
for s, v in enumerate(pattern.layout):
|
|
for i, code in enumerate(v):
|
|
assert i == code.q
|
|
assert code.t == max(0, s - code.q - 1)
|
|
|
|
@pytest.mark.parametrize("timesteps", [8, 16, 100])
|
|
@pytest.mark.parametrize("delay", [[0, 1, 2, 3], [0, 1, 1, 1], [0, 3, 3, 3], [0, 3]])
|
|
def test_pattern_max_delay(self, timesteps: int, delay: list):
|
|
provider = DelayedPatternProvider(len(delay), delay)
|
|
pattern = provider.get_pattern(timesteps)
|
|
assert pattern.max_delay == max(delay)
|
|
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay
|
|
|
|
|
|
class TestUnrolledPatternProvider:
|
|
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16])
|
|
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]])
|
|
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]])
|
|
def test_get_pattern(self, timesteps: int, flattening: list, delays: list):
|
|
n_q = len(flattening)
|
|
max_delay = max(delays)
|
|
provider = UnrolledPatternProvider(n_q, flattening, delays)
|
|
pattern = provider.get_pattern(timesteps)
|
|
assert len(pattern.layout) == provider.num_virtual_steps(timesteps) + max_delay
|
|
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16])
|
|
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]])
|
|
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]])
|
|
def test_pattern_max_delay(self, timesteps: int, flattening: list, delays: list):
|
|
n_q = len(flattening)
|
|
max_delay = max(delays)
|
|
provider = UnrolledPatternProvider(n_q, flattening, delays)
|
|
pattern = provider.get_pattern(timesteps)
|
|
assert pattern.max_delay == max_delay
|
|
|
|
|
|
class TestPattern:
|
|
|
|
def ref_build_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int):
|
|
"""Reference method to build the sequence from the pattern without using fancy scatter."""
|
|
bs, n_q, T = z.shape
|
|
z = z.cpu().numpy()
|
|
assert n_q == pattern.n_q
|
|
assert T <= pattern.timesteps
|
|
inp = torch.full((bs, n_q, len(pattern.layout)), special_token, dtype=torch.long).numpy()
|
|
inp[:] = special_token
|
|
for s, v in enumerate(pattern.layout):
|
|
for (t, q) in v:
|
|
if t < T:
|
|
inp[:, q, s] = z[:, q, t]
|
|
return torch.from_numpy(inp)
|
|
|
|
def ref_revert_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int):
|
|
"""Reference method to revert the sequence from the pattern without using fancy scatter."""
|
|
z = z.cpu().numpy()
|
|
bs, n_q, S = z.shape
|
|
assert pattern.n_q == n_q
|
|
inp = torch.full((bs, pattern.n_q, pattern.timesteps), special_token, dtype=torch.long).numpy()
|
|
inp[:] = special_token
|
|
for s, v in enumerate(pattern.layout):
|
|
for (t, q) in v:
|
|
if t < pattern.timesteps:
|
|
inp[:, q, t] = z[:, q, s]
|
|
return torch.from_numpy(inp)
|
|
|
|
def ref_revert_pattern_logits(self, z: torch.Tensor, pattern: Pattern, special_token: float):
|
|
"""Reference method to revert the logits from the pattern without using fancy scatter."""
|
|
z = z.cpu().numpy()
|
|
bs, card, n_q, S = z.shape
|
|
assert pattern.n_q == n_q
|
|
ref_layout = pattern.layout
|
|
inp = torch.full((bs, card, pattern.n_q, pattern.timesteps), special_token, dtype=torch.float).numpy()
|
|
inp[:] = special_token
|
|
for s, v in enumerate(ref_layout[1:]):
|
|
if s < S:
|
|
for (t, q) in v:
|
|
if t < pattern.timesteps:
|
|
inp[:, :, q, t] = z[:, :, q, s]
|
|
return torch.from_numpy(inp)
|
|
|
|
def _get_pattern_providers(self, n_q: int):
|
|
pattern_provider_1 = ParallelPatternProvider(n_q)
|
|
pattern_provider_2 = DelayedPatternProvider(n_q, list(range(n_q)))
|
|
pattern_provider_3 = DelayedPatternProvider(n_q, [0] + [1] * (n_q - 1))
|
|
pattern_provider_4 = UnrolledPatternProvider(
|
|
n_q, flattening=list(range(n_q)), delays=[0] * n_q
|
|
)
|
|
pattern_provider_5 = UnrolledPatternProvider(
|
|
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] * n_q
|
|
)
|
|
pattern_provider_6 = UnrolledPatternProvider(
|
|
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] + [5] * (n_q - 1)
|
|
)
|
|
return [
|
|
pattern_provider_1,
|
|
pattern_provider_2,
|
|
pattern_provider_3,
|
|
pattern_provider_4,
|
|
pattern_provider_5,
|
|
pattern_provider_6,
|
|
]
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [16, 72])
|
|
def test_build_pattern_sequence(self, n_q: int, timesteps: int):
|
|
bs = 2
|
|
card = 256
|
|
special_token = card
|
|
|
|
pattern_providers = self._get_pattern_providers(n_q)
|
|
for pattern_provider in pattern_providers:
|
|
pattern = pattern_provider.get_pattern(timesteps)
|
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps))
|
|
ref_res = self.ref_build_pattern_sequence(z, pattern, special_token)
|
|
res, indexes, mask = pattern.build_pattern_sequence(z, special_token)
|
|
assert (res == ref_res).float().mean() == 1.0
|
|
|
|
|
|
invalid_timesteps = [timesteps + 1]
|
|
if pattern.num_sequence_steps != pattern.timesteps:
|
|
invalid_timesteps.append(pattern.num_sequence_steps)
|
|
for i_timesteps in invalid_timesteps:
|
|
z2 = torch.randint(0, card, (bs, n_q, i_timesteps))
|
|
with pytest.raises(AssertionError):
|
|
pattern.build_pattern_sequence(z2, special_token)
|
|
|
|
|
|
invalid_qs = [0, n_q - 1, n_q + 1]
|
|
for i_q in invalid_qs:
|
|
z3 = torch.randint(0, card, (bs, i_q, timesteps))
|
|
with pytest.raises(AssertionError):
|
|
pattern.build_pattern_sequence(z3, special_token)
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [16, 72])
|
|
def test_revert_pattern_sequence(self, n_q: int, timesteps: int):
|
|
bs = 2
|
|
card = 256
|
|
special_token = card
|
|
|
|
pattern_providers = self._get_pattern_providers(n_q)
|
|
for pattern_provider in pattern_providers:
|
|
pattern = pattern_provider.get_pattern(timesteps)
|
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps))
|
|
s = self.ref_build_pattern_sequence(z, pattern, special_token)
|
|
ref_out = self.ref_revert_pattern_sequence(s, pattern, special_token)
|
|
|
|
assert z.shape == ref_out.shape
|
|
assert (z == ref_out).float().mean() == 1.0
|
|
|
|
out, indexes, mask = pattern.revert_pattern_sequence(s, special_token)
|
|
assert out.shape == ref_out.shape
|
|
assert (out == ref_out).float().mean() == 1.0
|
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32])
|
|
@pytest.mark.parametrize("timesteps", [16, 72])
|
|
@pytest.mark.parametrize("card", [1, 2, 256, 1024])
|
|
def test_revert_pattern_logits(self, n_q: int, timesteps: int, card: int):
|
|
bs = 2
|
|
special_token = card
|
|
logits_special_token = float('nan')
|
|
|
|
pattern_providers = self._get_pattern_providers(n_q)
|
|
for pattern_provider in pattern_providers:
|
|
pattern = pattern_provider.get_pattern(timesteps)
|
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps))
|
|
s = self.ref_build_pattern_sequence(z, pattern, special_token)
|
|
logits = torch.randn((bs, card, n_q, s.shape[-1]))
|
|
ref_out = self.ref_revert_pattern_logits(logits, pattern, logits_special_token)
|
|
|
|
assert ref_out.shape == torch.Size([bs, card, n_q, timesteps])
|
|
|
|
out, indexes, mask = pattern.revert_pattern_logits(logits, logits_special_token)
|
|
assert out.shape == ref_out.shape
|
|
assert (out == ref_out).float().mean() == 1.0
|
|
|