|
INTEG=AUDIOCRAFT_DORA_DIR="/tmp/magma_$(USER)" python3 -m dora -v run --clear device=cpu dataset.num_workers=0 optim.epochs=1 \
|
|
dataset.train.num_samples=10 dataset.valid.num_samples=10 \
|
|
dataset.evaluate.num_samples=10 dataset.generate.num_samples=2 sample_rate=16000 \
|
|
logging.level=DEBUG
|
|
INTEG_COMPRESSION = $(INTEG) solver=compression/debug rvq.n_q=2 rvq.bins=48 checkpoint.save_last=true # SIG is 5091833e
|
|
INTEG_MUSICGEN = $(INTEG) solver=musicgen/debug dset=audio/example compression_model_checkpoint=//sig/5091833e \
|
|
transformer_lm.n_q=2 transformer_lm.card=48 transformer_lm.dim=16 checkpoint.save_last=false # Using compression model from 5091833e
|
|
INTEG_AUDIOGEN = $(INTEG) solver=audiogen/debug dset=audio/example compression_model_checkpoint=//sig/5091833e \
|
|
transformer_lm.n_q=2 transformer_lm.card=48 transformer_lm.dim=16 checkpoint.save_last=false # Using compression model from 5091833e
|
|
INTEG_MBD = $(INTEG) solver=diffusion/debug dset=audio/example \
|
|
checkpoint.save_last=false # Using compression model from 616d7b3c
|
|
INTEG_WATERMARK = AUDIOCRAFT_DORA_DIR="/tmp/wm_$(USER)" dora run device=cpu dataset.num_workers=0 optim.epochs=1 \
|
|
dataset.train.num_samples=10 dataset.valid.num_samples=10 dataset.evaluate.num_samples=10 dataset.generate.num_samples=10 \
|
|
logging.level=DEBUG solver=watermark/robustness checkpoint.save_last=false dset=audio/example
|
|
|
|
default: linter tests
|
|
|
|
install:
|
|
pip install -U pip
|
|
pip install -U -e '.[dev]'
|
|
|
|
linter:
|
|
flake8 audiocraft && mypy audiocraft
|
|
flake8 tests && mypy tests
|
|
|
|
tests:
|
|
coverage run -m pytest tests
|
|
coverage report
|
|
|
|
tests_integ:
|
|
$(INTEG_COMPRESSION)
|
|
$(INTEG_MBD)
|
|
$(INTEG_MUSICGEN)
|
|
$(INTEG_AUDIOGEN)
|
|
$(INTEG_WATERMARK)
|
|
|
|
|
|
api_docs:
|
|
pdoc3 --html -o api_docs -f audiocraft
|
|
|
|
dist:
|
|
python setup.py sdist
|
|
|
|
.PHONY: linter tests api_docs dist
|
|
|