File size: 7,805 Bytes
2631d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# MAGNeT\n",
    "Welcome to MAGNeT's demo jupyter notebook. \n",
    "Here you will find a self-contained example of how to use MAGNeT for music/sound-effect generation.\n",
    "\n",
    "First, we start by initializing MAGNeT for music generation, you can choose a model from the following selection:\n",
    "1. facebook/magnet-small-10secs - a 300M non-autoregressive transformer capable of generating 10-second music conditioned on text.\n",
    "2. facebook/magnet-medium-10secs - 1.5B parameters, 10 seconds music samples.\n",
    "3. facebook/magnet-small-30secs - 300M parameters, 30 seconds music samples.\n",
    "4. facebook/magnet-medium-30secs - 1.5B parameters, 30 seconds music samples.\n",
    "\n",
    "We will use the `facebook/magnet-small-10secs` variant for the purpose of this demonstration."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from audiocraft.models import MAGNeT\n",
    "\n",
    "model = MAGNeT.get_pretrained('facebook/magnet-small-10secs')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, let us configure the generation parameters. Specifically, you can control the following:\n",
    "* `use_sampling` (bool, optional): use sampling if True, else do argmax decoding. Defaults to True.\n",
    "* `top_k` (int, optional): top_k used for sampling. Defaults to 0.\n",
    "* `top_p` (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.9.\n",
    "* `temperature` (float, optional): Initial softmax temperature parameter. Defaults to 3.0.\n",
    "* `max_clsfg_coef` (float, optional): Initial coefficient used for classifier free guidance. Defaults to 10.0.\n",
    "* `min_clsfg_coef` (float, optional): Final coefficient used for classifier free guidance. Defaults to 1.0.\n",
    "* `decoding_steps` (list of n_q ints, optional): The number of iterative decoding steps, for each of the n_q RVQ codebooks.\n",
    "* `span_arrangement` (str, optional): Use either non-overlapping spans ('nonoverlap') or overlapping spans ('stride1') \n",
    "                                      in the masking scheme. \n",
    "\n",
    "When left unchanged, MAGNeT will revert to its default parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.set_generation_params(\n",
    "    use_sampling=True,\n",
    "    top_k=0,\n",
    "    top_p=0.9,\n",
    "    temperature=3.0,\n",
    "    max_cfg_coef=10.0,\n",
    "    min_cfg_coef=1.0,\n",
    "    decoding_steps=[int(20 * model.lm.cfg.dataset.segment_duration // 10),  10, 10, 10],\n",
    "    span_arrangement='stride1'\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we can go ahead and start generating music given textual prompts."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Text-conditional Generation - Music"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from audiocraft.utils.notebook import display_audio\n",
    "\n",
    "###### Text-to-music prompts - examples ######\n",
    "text = \"80s electronic track with melodic synthesizers, catchy beat and groovy bass\"\n",
    "# text = \"80s electronic track with melodic synthesizers, catchy beat and groovy bass. 170 bpm\"\n",
    "# text = \"Earthy tones, environmentally conscious, ukulele-infused, harmonic, breezy, easygoing, organic instrumentation, gentle grooves\"\n",
    "# text = \"Funky groove with electric piano playing blue chords rhythmically\"\n",
    "# text = \"Rock with saturated guitars, a heavy bass line and crazy drum break and fills.\"\n",
    "# text = \"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle\"\n",
    "                   \n",
    "N_VARIATIONS = 3\n",
    "descriptions = [text for _ in range(N_VARIATIONS)]\n",
    "\n",
    "print(f\"text prompt: {text}\\n\")\n",
    "output = model.generate(descriptions=descriptions, progress=True, return_tokens=True)\n",
    "display_audio(output[0], sample_rate=model.compression_model.sample_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Text-conditional Generation - Sound Effects"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Besides music, MAGNeT models can generate sound effects given textual prompts. \n",
    "First, let's load an Audio-MAGNeT model, out of the following collection: \n",
    "1. facebook/audio-magnet-small - a 300M non-autoregressive transformer capable of generating 10 second sound effects conditioned on text.\n",
    "2. facebook/audio-magnet-medium - 10 second sound effect generation, 1.5B parameters.\n",
    "\n",
    "We will use the `facebook/audio-magnet-small` variant for the purpose of this demonstration."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from audiocraft.models import MAGNeT\n",
    "\n",
    "model = MAGNeT.get_pretrained('facebook/audio-magnet-small')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The recommended parameters for sound generation are a bit different than the defaults in MAGNeT, let's initialize it: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.set_generation_params(\n",
    "    use_sampling=True,\n",
    "    top_k=0,\n",
    "    top_p=0.8,\n",
    "    temperature=3.5,\n",
    "    max_cfg_coef=20.0,\n",
    "    min_cfg_coef=1.0,\n",
    "    decoding_steps=[int(20 * model.lm.cfg.dataset.segment_duration // 10),  10, 10, 10],\n",
    "    span_arrangement='stride1'\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we can go ahead and start generating sounds given textual prompts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from audiocraft.utils.notebook import display_audio\n",
    "               \n",
    "###### Text-to-audio prompts - examples ######\n",
    "text = \"Seagulls squawking as ocean waves crash while wind blows heavily into a microphone.\"\n",
    "# text = \"A toilet flushing as music is playing and a man is singing in the distance.\"\n",
    "\n",
    "N_VARIATIONS = 3\n",
    "descriptions = [text for _ in range(N_VARIATIONS)]\n",
    "\n",
    "print(f\"text prompt: {text}\\n\")\n",
    "output = model.generate(descriptions=descriptions, progress=True, return_tokens=True)\n",
    "display_audio(output[0], sample_rate=model.compression_model.sample_rate)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "vscode": {
   "interpreter": {
    "hash": "b02c911f9b3627d505ea4a19966a915ef21f28afb50dbf6b2115072d27c69103"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}