Spaces:
Runtime error
Runtime error
ankush-003
commited on
Commit
•
951a669
1
Parent(s):
e941397
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,58 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
-
# from tensorflow.keras.models import load_model
|
4 |
-
# from tensorflow.keras.preprocessing import image
|
5 |
-
import numpy as np
|
6 |
-
from fastapi.middleware.cors import CORSMiddleware
|
7 |
-
import io
|
8 |
-
import os
|
9 |
-
|
10 |
-
app = FastAPI()
|
11 |
-
|
12 |
-
app.add_middleware(
|
13 |
-
CORSMiddleware,
|
14 |
-
allow_origins=["
|
15 |
-
allow_credentials=True,
|
16 |
-
allow_methods=["*"],
|
17 |
-
allow_headers=["*"],
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
# Load your trained model
|
22 |
-
# model = load_model('flower_species_model.h5')
|
23 |
-
|
24 |
-
# def preprocess_image(img_file):
|
25 |
-
# img = image.load_img(img_file, target_size=(64, 64))
|
26 |
-
# img_array = image.img_to_array(img)
|
27 |
-
# img_array = np.expand_dims(img_array, axis=0)
|
28 |
-
# img_array /= 255.0
|
29 |
-
# return img_array
|
30 |
-
|
31 |
-
@app.post("/predict")
|
32 |
-
async def predict(files: list[UploadFile] = File(...)):
|
33 |
-
if not files:
|
34 |
-
return JSONResponse(content={"error": "No files uploaded"}, status_code=400)
|
35 |
-
|
36 |
-
predictions = []
|
37 |
-
for file in files:
|
38 |
-
contents = await file.read()
|
39 |
-
img = io.BytesIO(contents)
|
40 |
-
# preprocessed_img = preprocess_image(img)
|
41 |
-
# prediction = model.predict(preprocessed_img)
|
42 |
-
# predictions.append(prediction[0][0])
|
43 |
-
print("File uploaded")
|
44 |
-
|
45 |
-
threshold = 0.5
|
46 |
-
# predicted_classes = [1 if p > threshold else 0 for p in predictions]
|
47 |
-
# percentage_class_1 = (predicted_classes.count(1) / len(predicted_classes)) * 100
|
48 |
-
|
49 |
-
# return {"percentage_class_1": round(percentage_class_1, 2)}
|
50 |
-
return {"message": "Files uploaded", "percentage": 100}
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
# from tensorflow.keras.models import load_model
|
4 |
+
# from tensorflow.keras.preprocessing import image
|
5 |
+
import numpy as np
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
app.add_middleware(
|
13 |
+
CORSMiddleware,
|
14 |
+
allow_origins=["*"], # Add your frontend URL
|
15 |
+
allow_credentials=True,
|
16 |
+
allow_methods=["*"],
|
17 |
+
allow_headers=["*"],
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
# Load your trained model
|
22 |
+
# model = load_model('flower_species_model.h5')
|
23 |
+
|
24 |
+
# def preprocess_image(img_file):
|
25 |
+
# img = image.load_img(img_file, target_size=(64, 64))
|
26 |
+
# img_array = image.img_to_array(img)
|
27 |
+
# img_array = np.expand_dims(img_array, axis=0)
|
28 |
+
# img_array /= 255.0
|
29 |
+
# return img_array
|
30 |
+
|
31 |
+
@app.post("/predict")
|
32 |
+
async def predict(files: list[UploadFile] = File(...)):
|
33 |
+
if not files:
|
34 |
+
return JSONResponse(content={"error": "No files uploaded"}, status_code=400)
|
35 |
+
|
36 |
+
predictions = []
|
37 |
+
for file in files:
|
38 |
+
contents = await file.read()
|
39 |
+
img = io.BytesIO(contents)
|
40 |
+
# preprocessed_img = preprocess_image(img)
|
41 |
+
# prediction = model.predict(preprocessed_img)
|
42 |
+
# predictions.append(prediction[0][0])
|
43 |
+
print("File uploaded")
|
44 |
+
|
45 |
+
threshold = 0.5
|
46 |
+
# predicted_classes = [1 if p > threshold else 0 for p in predictions]
|
47 |
+
# percentage_class_1 = (predicted_classes.count(1) / len(predicted_classes)) * 100
|
48 |
+
|
49 |
+
# return {"percentage_class_1": round(percentage_class_1, 2)}
|
50 |
+
return {"message": "Files uploaded", "percentage": 100}
|
51 |
+
|
52 |
+
@app.get("/")
|
53 |
+
async def main():
|
54 |
+
return {"message": "Hello World"}
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
import uvicorn
|
58 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|