Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse | |
# from tensorflow.keras.models import load_model | |
# from tensorflow.keras.preprocessing import image | |
import numpy as np | |
from fastapi.middleware.cors import CORSMiddleware | |
import io | |
import os | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # Add your frontend URL | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Load your trained model | |
# model = load_model('flower_species_model.h5') | |
# def preprocess_image(img_file): | |
# img = image.load_img(img_file, target_size=(64, 64)) | |
# img_array = image.img_to_array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array /= 255.0 | |
# return img_array | |
async def predict(files: list[UploadFile] = File(...)): | |
if not files: | |
return JSONResponse(content={"error": "No files uploaded"}, status_code=400) | |
predictions = [] | |
for file in files: | |
contents = await file.read() | |
img = io.BytesIO(contents) | |
# preprocessed_img = preprocess_image(img) | |
# prediction = model.predict(preprocessed_img) | |
# predictions.append(prediction[0][0]) | |
print("File uploaded") | |
threshold = 0.5 | |
# predicted_classes = [1 if p > threshold else 0 for p in predictions] | |
# percentage_class_1 = (predicted_classes.count(1) / len(predicted_classes)) * 100 | |
# return {"percentage_class_1": round(percentage_class_1, 2)} | |
return {"message": "Files uploaded", "percentage": 100} | |
async def main(): | |
return {"message": "Hello World"} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8080) |