ankush-003's picture
Update app.py
bb27896
raw
history blame
785 Bytes
import gradio as gr
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
def predict(payload, malitious):
inputs = tokenizer(payload, return_tensors="tf")
model = TFAutoModelForSequenceClassification.from_pretrained("models/ankush-003/nosqli_identifier")
logits = model(**inputs).logits
predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
# print(model.config.id2label[predicted_class_id])
expected = "Malitious" if malitious else "Benign"
return model.config.id2label[predicted_class_id], expected
demo = gr.Interface(
fn=predict,
inputs=["text","checkbox"],
outputs=["text","text"]
)
demo.launch(debug=True)
# gr.Interface.load("models/ankush-003/nosqli_identifier").launch()