Spaces:
Runtime error
Runtime error
File size: 1,514 Bytes
b54e71a 93e018c 7944b71 309d442 e385089 309d442 0749cb7 309d442 e385089 99c7040 bb27896 0e7f3ec 93e018c 309d442 6ef3ddb c5cc59e 2237d69 b54e71a 6ef3ddb 93e018c 2237d69 0e7f3ec 2237d69 6ef3ddb 93b0079 6ef3ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import json
import tensorflow as tf
# from transformers import AutoTokenizer
# from transformers import TFAutoModelForSequenceClassification
# Load model directly
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
# tokenizer = AutoTokenizer.from_pretrained("ankush-003/nosqli_identifier")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = TFAutoModelForSequenceClassification.from_pretrained("ankush-003/nosqli_identifier")
def predict(username, pwd, label, payload_text = None):
if(payload_text is None):
payload["username"] = username
payload["password"] = pwd
payload_text = json.dumps(payload)
inputs = tokenizer(payload_text, return_tensors="tf")
# model = TFAutoModelForSequenceClassification.from_pretrained("ankush-003/nosqli_identifier")
logits = model(**inputs).logits
predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
# print(model.config.id2label[predicted_class_id])
return model.config.id2label[predicted_class_id]
demo = gr.Interface(
fn=predict,
inputs=[gr.Textbox(label="Enter Username"),gr.Textbox(label="Enter Password"),
gr.Dropdown(
["Malitious", "Benign"], label="Expected", info="Enter expected value"
),
gr.Textbox(label="Enter Payload[optional]")]
outputs=[gr.Textbox(label="Model Prediction")]
)
demo.launch(debug=True)
# gr.Interface.load("models/ankush-003/nosqli_identifier").launch() |