Spaces:
Runtime error
Runtime error
File size: 1,139 Bytes
b54e71a 7944b71 309d442 e385089 309d442 0749cb7 309d442 e385089 99c7040 bb27896 309d442 6ef3ddb bb27896 b54e71a 6ef3ddb bb27896 6ef3ddb 93b0079 6ef3ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import tensorflow as tf
# from transformers import AutoTokenizer
# from transformers import TFAutoModelForSequenceClassification
# Load model directly
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
# tokenizer = AutoTokenizer.from_pretrained("ankush-003/nosqli_identifier")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = TFAutoModelForSequenceClassification.from_pretrained("ankush-003/nosqli_identifier")
def predict(payload, malitious):
inputs = tokenizer(payload, return_tensors="tf")
# model = TFAutoModelForSequenceClassification.from_pretrained("ankush-003/nosqli_identifier")
logits = model(**inputs).logits
predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
# print(model.config.id2label[predicted_class_id])
expected = "Malitious" if malitious else "Benign"
return model.config.id2label[predicted_class_id], expected
demo = gr.Interface(
fn=predict,
inputs=["text","checkbox"],
outputs=["text","text"]
)
demo.launch(debug=True)
# gr.Interface.load("models/ankush-003/nosqli_identifier").launch() |