Spaces:
Sleeping
Sleeping
File size: 6,946 Bytes
03b8ca7 5812f2d 03b8ca7 726dddd 03b8ca7 1ba068e 03b8ca7 6f367b5 bf15aa4 6f367b5 45166fe 6f367b5 bcecdab 03b8ca7 bcecdab 03b8ca7 bcecdab 03b8ca7 bcecdab c13030a 726dddd bcecdab 03b8ca7 bcecdab 03b8ca7 bcecdab 726dddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import time
import os
import pandas as pd
from collections.abc import Collection
from langchain.memory import ChatMessageHistory
from langchain_community.chat_message_histories import (
StreamlitChatMessageHistory,
)
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_mongodb import MongoDBAtlasVectorSearch
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain.chains import RetrievalQA
import pymongo
import logging
import asyncio
import nest_asyncio
from langchain.docstore.document import Document
import redis
import threading
# Config
nest_asyncio.apply()
logging.basicConfig(level=logging.INFO)
database = "AlertSimAndRemediation"
collection = "alert_embed"
stream_name = "alerts"
index_name = "alert_index"
# Embedding model
embedding_args = {
"model_name": "BAAI/bge-large-en-v1.5",
"model_kwargs": {"device": "cpu"},
"encode_kwargs": {"normalize_embeddings": True}
}
embedding_model = HuggingFaceEmbeddings(**embedding_args)
# Streamlit Application
st.set_page_config(
page_title="ASMR Query Bot π",
page_icon="π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'About': "https://github.com/ankush-003/alerts-simulation-and-remediation"
}
)
st.title('ASMR Query Bot π')
# vector search
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
os.environ["MONGO_URI"],
f"{database}.{collection}",
embedding_model,
index_name=index_name,
)
# contextualising prev chats
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# prompt
system_prompt = """
You are a helpful query assistant for Alertmanager, an open-source system for monitoring and alerting on system metrics. Your goal is to accurately answer questions related to alerts triggered within the Alertmanager system based on the alert information provided to you. \
You will be given details about specific alerts, including the alert source, severity, category, and any other relevant metadata. Using this information, you should be able to respond to queries about the nature of the alert, what it signifies, potential causes, and recommended actions or troubleshooting steps. \
Your responses should be clear, concise, and tailored to the specific alert details provided, while also drawing from your broader knowledge about Alertmanager and monitoring best practices when relevant. If you cannot provide a satisfactory answer due to insufficient information, politely indicate that and ask for any additional context needed. \
<context>
{context}
</context>
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
if "chat_messages" not in st.session_state:
st.session_state.chat_messages = []
# streamlit history
history = StreamlitChatMessageHistory(key="chat_messages")
# Initialize chat history
if len(history.messages) == 0:
history.add_ai_message("Hey I am ASMR Query Bot, how can i help you ?")
with st.sidebar:
st.title('Settings βοΈ')
st.subheader('Models and parameters')
selected_model = st.sidebar.selectbox('Choose a model', ['Llama3-8B', 'Llama3-70B', 'Mixtral-8x7B'], key='selected_model')
if selected_model == 'Mixtral-8x7B':
model_name="mixtral-8x7b-32768"
elif selected_model == 'Llama3-70B':
model_name='Llama3-70b-8192'
elif selected_model == 'Llama3-8B':
model_name='Llama3-8b-8192'
temp = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.0, step=0.01)
k = st.sidebar.slider('number of docs retrieved', min_value=1, max_value=20, value=2, step=1)
def get_response(query, config):
chat = ChatGroq(temperature=temp, model_name=model_name)
qa_retriever = vector_search.as_retriever(
search_type="similarity",
search_kwargs={"k": k},
)
history_aware_retriever = create_history_aware_retriever(
chat, qa_retriever, contextualize_q_prompt
)
question_answer_chain = create_stuff_documents_chain(chat, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
lambda session_id: history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
return conversational_rag_chain.invoke({"input": prompt}, config=config)
def clear_chat_history():
st.session_state.chat_messages = []
history.add_ai_message("Hey I am ASMR Query Bot, how can i help you ?")
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
for msg in history.messages:
st.chat_message(msg.type).write(msg.content)
# preprocessing context
def format_docs_as_table(docs):
# formatted_docs = []
# for i, doc in enumerate(docs, start=1):
# metadata_str = "\n".join([f"**{key}**: `{value}`\n" for key, value in doc.metadata.items() if key != "embedding"])
# formatted_doc = f"- {doc.page_content}\n\n**Metadata:**\n{metadata_str}"
# formatted_docs.append(formatted_doc)
# return "\n\n".join(formatted_docs)
rows = []
for doc in docs:
row = {'Content': doc.page_content}
row.update({k: v for k, v in doc.metadata.items() if k != 'embedding'})
rows.append(row)
return pd.DataFrame(rows)
def stream_data(response):
for word in response.split(" "):
yield word + " "
time.sleep(0.05)
if prompt := st.chat_input():
with st.chat_message("Human"):
st.markdown(prompt)
# As usual, new messages are added to StreamlitChatMessageHistory when the Chain is called.
config = {"configurable": {"session_id": "any"}}
res = get_response(prompt, config)
with st.chat_message("AI"):
st.write_stream(stream_data(res['answer']))
with st.expander("View Source"):
st.subheader("Source Alerts π’")
df = format_docs_as_table(res['context'])
st.table(df) |